A survey on rainbow (vertex-)index of graphs

被引:0
|
作者
Zhao, Yan [1 ,2 ,3 ,4 ]
Zhang, Zan-Bo [5 ,6 ]
Zhang, Xiaoyan [1 ,2 ,3 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
[2] Nanjing Normal Univ, Inst Math, Nanjing 210023, Peoples R China
[3] Nanjing Normal Univ, Key Lab NSLSCS, Minist Educ, Nanjing 210023, Peoples R China
[4] Taizhou Univ, Dept Math, Taizhou 225300, Peoples R China
[5] Guangdong Univ Finance & Econ, Sch Stat & Math, Guangzhou 510320, Peoples R China
[6] Guangdong Univ Finance & Econ, Inst Artificial Intelligence & Deep Learning, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
(Vertex-)coloring; Connectivity; (Vertex-)rainbowS-tree; (Vertex-)rainbow index; VERTEX-CONNECTION NUMBER; 3-RAINBOW INDEX; COMPLEXITY; HARDNESS;
D O I
10.1016/j.dam.2024.01.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The concept of rainbow connection was introduced by Chartrand et al. in 2008. The k-rainbow index, which is a generalization of rainbow connection number was also introduced by Chartrand et al. in 2010. These two new graph-parameters are defined for all edge-colored graphs. Krivelevich and Yuster in 2010 naturally introduced the rainbow vertex-connection number which is defined on vertex-colored graphs. As a natural counterpart of the k-rainbow index and a generalization of rainbow vertexconnection number, Mao introduced the concept of k-vertex-rainbow index in 2016. Nowadays they have become new and active subjects in graph theory. In this survey we attempt to bring together most of the basic and new results that dealt with the k-rainbow index and k-vertex-rainbow index. (c) 2024 Published by Elsevier B.V.
引用
收藏
页码:96 / 105
页数:10
相关论文
共 50 条
  • [1] Note on the complexity of deciding the rainbow (vertex-) connectedness for bipartite graphs
    Li, Shasha
    Li, Xueliang
    Shi, Yongtang
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 258 : 155 - 161
  • [2] The (vertex-)monochromatic index of a graph
    Xueliang Li
    Di Wu
    Journal of Combinatorial Optimization, 2017, 33 : 1443 - 1453
  • [3] The (vertex-)monochromatic index of a graph
    Li, Xueliang
    Wu, Di
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (04) : 1443 - 1453
  • [4] The complexity of determining the vertex-rainbow index of graphs
    Mao, Yaping
    Shi, Yongtang
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2015, 7 (04)
  • [5] Vertex- and edge-minimal and locally minimal graphs
    Boros, Endre
    Gurvich, Vladimir
    DISCRETE MATHEMATICS, 2009, 309 (12) : 3853 - 3865
  • [6] A Characterization of 4-Xρ-(Vertex-)Critical Graphs
    Ferme, Jasmina
    FILOMAT, 2022, 36 (19) : 6481 - 6501
  • [7] Vertex- and edge-weighted molecular graphs for amines
    Berinde, Zoita
    REVUE ROUMAINE DE CHIMIE, 2006, 51 (11) : 1131 - +
  • [8] VERTEX RAINBOW COLORINGS OF GRAPHS
    Fujie-Okamoto, Futaba
    Kolasinski, Kyle
    Lin, Jianwei
    Zhang, Ping
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (01) : 63 - 80
  • [9] Conflict-free (vertex-)connection numbers of graphs with small diameter
    Li, Xueliang
    Zhu, Xiaoyu
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2020, 76 : 288 - 298
  • [10] A Characterization of 4-chi p-(Vertex-)Critical Graphs
    Ferme, Jasmina
    FILOMAT, 2022, 36 (18) : 6481 - 6501