Integrated Evaluation and error decomposition of four gridded precipitation products using dense rain gauge observations over the Yunnan-Kweichow Plateau, China

被引:2
作者
Lu, Tianjian [1 ]
Xiao, Qingquan [1 ]
Lu, Hanyu [1 ,2 ,4 ]
Ren, Jintong [2 ]
Yuan, Yongyi [2 ]
Luo, Xiaoshan [2 ]
Zhang, Zhijie [3 ]
机构
[1] Guizhou Univ, Coll Big Data & Informat Engn, Guiyang, Peoples R China
[2] Guizhou Univ Engn Sci, Sch Informat Engn, Bijie, Peoples R China
[3] Univ Arizona, Sch Geog Dev & Environm, Tucson, AZ USA
[4] Guizhou Univ, Coll Big Data & Informat Engn, Guiyang 550025, Peoples R China
基金
中国国家自然科学基金;
关键词
Precipitation products; comprehensive assessment; error decomposition; Yunnan-Kweichow plateau; RIVER-BASIN; SATELLITE; PERFORMANCE; IMERG; REGION; CMORPH;
D O I
10.1080/22797254.2024.2322742
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Evaluating the precision and applicability of high-quality precipitation products in the distinctive terrain and intricate climate of the Yunnan-Kweichow Plateau (YKP) is pivotal for climate research. This study comprehensively assesses four gridded precipitation datasets (AERA5-Asia, AIMERG, ERA5-Land, and IMERG-Final) using the China Meteorological Administration's surface precipitation data. It employs eight statistical indicators and error decomposition methods at various spatiotemporal scales. The main findings are as follows: (1) AERA5-Asia, AIMERG, and IMERG-Final show similar precipitation patterns, with ERA5-Land overestimating. While all display minor seasonal variations, AERA5-Asia underestimates summer rain. ERA5-Land tends to overstate, whereas AIMERG and IMERG-Final are generally accurate but slightly undervalued in southern YKP. (2) Hourly analysis reveals AERA5-Asia leads in performance metrics (CC: 0.23, MAE: 0.49 mm/hour, RMSE: 0.18 mm/hour, CSI: 0.27). In contrast, ERA5-Land lags, marked by the lowest BIAS (35.39%), FAR (0.74), and FBI (2.85). AIMERG and IMERG-Final display comparable results but underperform in CC (0.16, 0.13), POD (0.31, 0.30), and CSI (0.19, 0.18). (3) False bias significantly contributes to the total bias of precipitation products. AERA5-Asia and AIMERG mitigate total bias and enhance false precipitation situations through calibration algorithms, albeit introducing missed bias in the central region of YKP. The study findings offer valuable insights into YKP precipitation, informing the development of grid-based fusion algorithms in the region's complex terrain.
引用
收藏
页数:19
相关论文
共 88 条
  • [31] Evaluation of precipitation products over different climatic zones of Pakistan
    Khan, Muhammad Kaleem Ullah
    Iqbal, Muhammad Farooq
    Mahmood, Irfan
    Shahzad, Muhammad Imran
    Zafar, Qudsia
    Khalid, Bushra
    [J]. THEORETICAL AND APPLIED CLIMATOLOGY, 2023, 151 (3-4) : 1301 - 1321
  • [32] Linking Total Precipitable Water to Precipitation Extremes Globally
    Kim, Seokhyeon
    Sharma, Ashish
    Wasko, Conrad
    Nathan, Rory
    [J]. EARTHS FUTURE, 2022, 10 (02)
  • [33] The JRA-55 Reanalysis: General Specifications and Basic Characteristics
    Kobayashi, Shinya
    Ota, Yukinari
    Harada, Yayoi
    Ebita, Ayataka
    Moriya, Masami
    Onoda, Hirokatsu
    Onogi, Kazutoshi
    Kamahori, Hirotaka
    Kobayashi, Chiaki
    Endo, Hirokazu
    Miyaoka, Kengo
    Takahashi, Kiyotoshi
    [J]. JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2015, 93 (01) : 5 - 48
  • [34] Comparison of bias-corrected multisatellite precipitation products by deep learning framework
    Le, Xuan-Hien
    Van, Linh Nguyen
    Nguyen, Duc Hai
    Nguyen, Giang V.
    Jung, Sungho
    Lee, Giha
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 116
  • [35] Satellite Remote Sensing of Precipitation and the Terrestrial Water Cycle in a Changing Climate
    Levizzani, Vincenzo
    Cattani, Elsa
    [J]. REMOTE SENSING, 2019, 11 (19)
  • [36] Leveraging machine learning for quantitative precipitation estimation from Fengyun-4 geostationary observations and ground meteorological measurements
    Li, Xinyan
    Yang, Yuanjian
    Mi, Jiaqin
    Bi, Xueyan
    Zhao, You
    Huang, Zehao
    Liu, Chao
    Zong, Lian
    Li, Wanju
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2021, 14 (11) : 7007 - 7023
  • [37] Assessment of GPM IMERG and radar quantitative precipitation estimation (QPE) products using dense rain gauge observations in the Guangdong-Hong Kong-Macao Greater Bay Area, China
    Li, Xue
    Chen, Yangbo
    Wang, Huanyu
    Zhang, Yueyuan
    [J]. ATMOSPHERIC RESEARCH, 2020, 236
  • [38] CRA-40/Atmosphere-The First-Generation Chinese Atmospheric Reanalysis (1979-2018): System Description and Performance Evaluation
    Liu, Zhiquan
    Jiang, Lipeng
    Shi, Chunxiang
    Zhang, Tao
    Zhou, Zijiang
    Liao, Jie
    Yao, Shuang
    Liu, Jingwei
    Wang, Minyan
    Wang, Huiying
    Liang, Xiao
    Zhang, Zhisen
    Yao, Yan
    Zhu, Ting
    Chen, Zhe
    Xu, Wenhui
    Cao, Lijuan
    Jiang, Hui
    Hu, Kaixi
    [J]. JOURNAL OF METEOROLOGICAL RESEARCH, 2023, 37 (01) : 1 - 19
  • [39] Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia
    Loo, Yen Yi
    Billa, Lawal
    Singh, Ajit
    [J]. GEOSCIENCE FRONTIERS, 2015, 6 (06) : 817 - 823
  • [40] Calibrating FY4A QPE using CMPA over Yunnan-Kweichow Plateau in summer 2019
    Lu, Hanyu
    Huang, Ziyue
    Ding, Leiding
    Lu, Tianjian
    Yuan, Yongyi
    [J]. EUROPEAN JOURNAL OF REMOTE SENSING, 2021, 54 (01) : 476 - 486