Nanostructured Al-Ti-Fe-Mn-Ni High-Entropy Alloy by Mechanical Alloying: Synthesis and Characterization

被引:0
|
作者
Sharma, Vivek [1 ]
Mallick, Ashis [1 ]
Joardar, Joydip [2 ]
Kumar, Shakti [1 ]
Konovalov, S. V. [3 ]
机构
[1] Indian Inst Technol ISM Dhanbad, Dept Mech Engn, Dhanbad 826004, India
[2] Int Adv Res Ctr Powder Met & New Mat ARCI, Hyderabad 500005, India
[3] Siberian State Ind Univ, 42 Kirov Str, Novokuznetsk 654007, Kemerovo Region, Russia
关键词
High-entropy alloy; Mechanical alloying; Powder metallurgy; Microstructure; Mechanical and wear properties; MICROSTRUCTURE;
D O I
10.1007/s13369-024-08805-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A multicomponent bulk nanostructured Al20Ti20Fe20Mn20Ni20 high-entropy alloy (HEA) was prepared by the powder metallurgy method. The process involved mechanical alloying of the elemental powders of equal wt% followed by cold compaction and conventional sintering in an inert atmosphere at different temperatures. The structural evaluation and morphological studies of the milled powders were carried out by HRTEM and XRD analysis. The crystal size and d-spacing of the milled powder significantly reduced with the milling duration. The effects of sintering temperatures on the microstructure, wear resistance, and the hardness of Al20Ti20Fe20Mn20Ni20 were investigated. The microstructural analysis showed that the prepared HEAs had a multiphase microstructure consisting of BCC and intermetallic compounds. As the sintering temperature grew, the microhardness and wear resistance increased, demonstrating that the properties of the current HEA were improved by using high sintering temperatures. The increase in density with sintering temperatures and the intermetallic phase contents acted as reinforcement might have enhanced the hardness of the HEA. The best hardness value and the least amount of wear were found in the sample sintered at 900 degrees C.
引用
收藏
页码:11623 / 11634
页数:12
相关论文
共 50 条
  • [1] Synthesis and characterization of AlCoCrCuFeZnx high-entropy alloy by mechanical alloying
    Murali, M.
    Babu, S. P. Kumaresh
    Krishna, B. Jeevan
    Vallimanalan, A.
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2016, 26 (04) : 380 - 384
  • [2] Synthesis and characterization of AlCoCrCuFeZnx high-entropy alloy by mechanical alloying
    M.Murali
    S.P.Kumaresh Babu
    B.Jeevan Krishna
    A.Vallimanalan
    Progress in Natural Science:Materials International, 2016, 26 (04) : 380 - 384
  • [3] CHARACTERIZATION OF EQUIMOLAR HIGH-ENTROPY ALLOY FROM Al-Ti-Co-Ni-Fe SYSTEM
    Gorecki, Kamil
    Bala, Piotr
    Cios, Grzegorz
    Tokarski, Tomasz
    Koziel, Tomasz
    METAL 2016: 25TH ANNIVERSARY INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS, 2016, : 1206 - 1209
  • [4] Synthesis and Characterization Study of Al10Cr25Co20Ni25Fe20 High-Entropy Alloy Powders through Mechanical Alloying
    Jeyasimman, D.
    Vijayaraghavan, V.
    Venkateshwara, Sri
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024,
  • [5] Microstructural Evolution of Ti–Al–Ni (Cr,Co,Fe)-Based High-Entropy Alloys Processed Through Mechanical Alloying
    R. Anand Sekhar
    Srinivasa Rao Bakshi
    Transactions of the Indian Institute of Metals, 2019, 72 : 1427 - 1430
  • [6] Obtaining a High-Entropy Fe–Cr–Co–Ni–Ti Alloy by Mechanical Alloying and Electric Spark Plasma Sintering of a Powder Mixture
    N. A. Kochetov
    A. S. Rogachev
    D. Yu. Kovalev
    A. S. Shchukin
    S. G. Vadchenko
    Russian Journal of Non-Ferrous Metals, 2021, 62 : 716 - 722
  • [7] Microstructural Evolution of Ti-Al-Ni (Cr,Co,Fe)-Based High-Entropy Alloys Processed Through Mechanical Alloying
    Sekhar, R. Anand
    Bakshi, Srinivasa Rao
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2019, 72 (06) : 1427 - 1430
  • [8] Effect of aluminum alloying on microstructure and mechanical behaviors of Fe35Ni35Cr20Mn10 high-entropy alloy
    Zhou, Jun
    Liao, Hengcheng
    Chen, Hongmei
    Feng, Di
    Zhu, Weijun
    VACUUM, 2025, 233
  • [9] Obtaining a High-Entropy Fe-Cr-Co-Ni-Ti Alloy by Mechanical Alloying and Electric Spark Plasma Sintering of a Powder Mixture
    Kochetov, N. A.
    Rogachev, A. S.
    Kovalev, D. Yu
    Shchukin, A. S.
    Vadchenko, S. G.
    RUSSIAN JOURNAL OF NON-FERROUS METALS, 2021, 62 (06) : 716 - 722
  • [10] Characterization of Nanocrystalline CoCrFeNiCuAl High-entropy Alloy Powder Processed by Mechanical Alloying
    Zhang, Kuibao
    Fu, Zhengyi
    Zhang, Jinyong
    Wang, Weimin
    Wang, Hao
    Wang, Yucheng
    Zhang, Qingjie
    ECO-MATERIALS PROCESSING AND DESIGN X, 2009, 620-622 : 383 - 386