Rapid point-of-care detection of SARS-CoV-2 infection in exhaled breath using ion mobility spectrometry: a pilot study

被引:1
作者
Voit, Florian [1 ]
Erber, J. [1 ]
Feuerherd, M. [2 ,3 ,4 ]
Fries, H. [5 ]
Bitterlich, N. [6 ]
Diehl-Wiesenecker, E. [7 ,8 ]
Gladis, S. [1 ]
Lieb, J. [1 ]
Protzer, U. [2 ,9 ]
Schneider, J. [1 ]
Geisler, F. [1 ]
Somasundaram, R. [7 ,8 ]
Schmid, R. M. [1 ]
Bauer, W. [7 ,8 ]
Spinner, C. D. [1 ,9 ]
机构
[1] Tech Univ Munich, Univ Hosp Rechts Der Isar, Sch Med, Dept Internal Med 2, Ismaninger Str 22, D-81675 Munich, Germany
[2] TUM, Helmholtz Ctr Munich, Inst Virol, Sch Med, Munich, Germany
[3] Massachusetts Gen Hosp, Div Gastroenterol, Boston, MA 02114 USA
[4] Harvard Med Sch, Boston, MA 02115 USA
[5] B Braun Melsungen AG, Melsungen, Germany
[6] ABX CRO Adv Pharmaceut Serv Forschungsgesellschaf, Dresden, Germany
[7] Free Univ Berlin, Dept Emergency Med, Charite Univ Berlin, Berlin, Germany
[8] Humboldt Univ, Berlin, Germany
[9] German Ctr Infect Res DZIF, Munich Partner Site, Munich, Germany
关键词
COVID-19; SARS-CoV-2; Breath gas analysis; Ion mobility spectrometry;
D O I
10.1186/s40001-023-01284-3
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Background An effective testing strategy is essential for pandemic control of the novel Coronavirus disease 2019 (COVID-19) caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Breath gas analysis can expand the available toolbox for diagnostic tests by using a rapid, cost -beneficial, high -throughput point-of -care test. We conducted a bi-center clinical pilot study in Germany to evaluate breath gas analysis using multi-capillary column ion mobility spectrometry (MCC-IMS) to detect SARS-CoV-2 infection. Methods Between September 23, 2020, and June 11, 2021, breath gas measurements were performed on 380 patients (SARS-CoV-2 real-time polymerase chain reaction (PCR) positive: 186; PCR negative: 194) presenting to the emergency department (ED) with respiratory symptoms. Results Breath gas analysis using MCC-IMS identified 110 peaks; 54 showed statistically significant differences in peak intensity between the SARS-CoV-2 PCR-negative and PCR-positive groups. A decision tree analysis classification resulted in a sensitivity of 83% and specificity of 86%, but limited robustness to dataset changes. Modest values for the sensitivity (74%) and specificity (52%) were obtained using linear discriminant analysis. A systematic search for peaks led to a sensitivity of 77% and specificity of 67%; however, validation by transferability to other data is questionable. Conclusions Despite identifying several peaks by MCC-IMS with significant differences in peak intensity between PCR-negative and PCR-positive samples, finding a classification system that allows reliable differentiation between the two groups proved to be difficult. However, with some modifications to the setup, breath gas analysis using MCC-IMS may be a useful diagnostic toolbox for SARS-CoV-2 infection.
引用
收藏
页数:12
相关论文
共 50 条
[41]   Point-of-Care Diagnostic Tools for Surveillance of SARS-CoV-2 Infections [J].
Sakthivel, Dhanasekaran ;
Delgado-Diaz, David ;
McArthur, Laura ;
Hopper, William ;
Richards, Jack S. ;
Narh, Charles A. .
FRONTIERS IN PUBLIC HEALTH, 2021, 9
[42]   Clinical evaluation of SARS-CoV-2 point-of-care antibody tests [J].
Robosa, Roselle S. ;
Sandaradura, Indy ;
Dwyer, Dominic E. ;
O'Sullivan, Matthew V. N. .
PATHOLOGY, 2020, 52 (07) :783-789
[43]   Clinical Diagnostic Point-of-Care Molecular Assays for SARS-CoV-2 [J].
V. Tolan, Nicole ;
Horowitz, Gary L. .
CLINICS IN LABORATORY MEDICINE, 2022, 42 (02) :223-236
[44]   Evaluating the use of posterior oropharyngeal saliva in a point-of-care assay for the detection of SARS-CoV-2 [J].
Chen, Jonathan Hon-Kwan ;
Yip, Cyril Chik-Yan ;
Poon, Rosana Wing-Shan ;
Chan, Kwok-Hung ;
Cheng, Vincent Chi-Chung ;
Hung, Ivan Fan-Ngai ;
Chan, Jasper Fuk-Woo ;
Yuen, Kwok-Yung ;
To, Kelvin Kai-Wang .
EMERGING MICROBES & INFECTIONS, 2020, 9 (01) :1356-1359
[45]   Miniaturized Real-Time PCR systems for SARS-CoV-2 detection at the Point-of-Care [J].
Garzarelli, Valeria ;
Chiriaco, Maria Serena ;
Cereda, Marco ;
Autuori, Isidora ;
Ferrara, Francesco .
CLINICA CHIMICA ACTA, 2022, 536 :104-111
[46]   Point-of-care testing for the detection of SARS-CoV-2: a systematic review and meta-analysis [J].
Yoon, S. H. ;
Yang, S. ;
Cho, H. ;
Eun, S. ;
Koo, C. M. ;
Kim, M. K. .
EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2021, 25 (01) :503-517
[47]   Piezoelectric point-of-care biosensor for the detection of SARS-COV-2 (COVID-19) antibodies [J].
Mandal, Debdyuti ;
Indaleeb, Mustahseen M. ;
Younan, Alexandra ;
Banerjee, Sourav .
SENSING AND BIO-SENSING RESEARCH, 2022, 37
[48]   Rapid point-of-care detection of SARS-CoV-2 using reverse transcription loop-mediated isothermal amplification (RT-LAMP) [J].
Mautner, Lena ;
Baillie, Christin-Kirsty ;
Herold, Heike Marie ;
Volkwein, Wolfram ;
Guertler, Patrick ;
Eberle, Ute ;
Ackermann, Nikolaus ;
Sing, Andreas ;
Pavlovic, Melanie ;
Goerlich, Ottmar ;
Busch, Ulrich ;
Wassill, Lars ;
Huber, Ingrid ;
Baiker, Armin .
VIROLOGY JOURNAL, 2020, 17 (01)
[49]   Rapid point-of-care detection of SARS-CoV-2 using reverse transcription loop-mediated isothermal amplification (RT-LAMP) [J].
Lena Mautner ;
Christin-Kirsty Baillie ;
Heike Marie Herold ;
Wolfram Volkwein ;
Patrick Guertler ;
Ute Eberle ;
Nikolaus Ackermann ;
Andreas Sing ;
Melanie Pavlovic ;
Ottmar Goerlich ;
Ulrich Busch ;
Lars Wassill ;
Ingrid Huber ;
Armin Baiker .
Virology Journal, 17
[50]   Methodological problems of SARS-CoV-2 rapid point-of-care tests when used in mass testing [J].
Hirsch, Oliver ;
Bergholz, Werner ;
Kisielinski, Kai ;
Giboni, Paul ;
Soennichsen, Andreas .
AIMS PUBLIC HEALTH, 2022, 9 (01) :73-93