SSCL: Semi-supervised Contrastive Learning for Industrial Anomaly Detection

被引:0
作者
Cai, Wei [1 ]
Gao, Jiechao [2 ]
机构
[1] Univ Sci & Technol Beijing, Beijing, Peoples R China
[2] Univ Virginia, Charlottesville, VA 22904 USA
来源
PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT IV | 2024年 / 14428卷
关键词
Semi-supervised classification; Anomaly detection; Contrastive learning; Data representation;
D O I
10.1007/978-981-99-8462-6_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Anomaly detection is an important machine learning task that aims to identify data points that are inconsistent with normal data patterns. In real-world scenarios, it is common to have access to some labeled and unlabeled samples that are known to be either normal or anomalous. To make full use of both types of data, we propose a semi-supervised contrastive learning method that combines self-supervised contrastive learning and supervised contrastive learning, forming a new framework: SSCL. Our method can learn a data representation that can distinguish between normal and anomalous data patterns, based on limited labeled data and abundant unlabeled data. We evaluate our method on multiple benchmark datasets, including MNIST, CIFAR-10 and industrial anomaly detection MVtec, STC. The experimental results show that our method achieves superior performance on all datasets compared to existing state-of-the-art methods.
引用
收藏
页码:100 / 112
页数:13
相关论文
共 22 条
[1]  
Amer M., 2013, P ACM SIGKDD WORKSH, P8, DOI [DOI 10.1145/2500853.2500857, 10.1145/2500853.2500857]
[2]  
Budiarto E. H., 2019, P 2019 5 INT C SCI T, V1, P1, DOI [DOI 10.1109/ICST47872.2019.9166366, 10.1109/ICST47872.2019.9166366]
[3]  
Chen T, 2020, PR MACH LEARN RES, V119
[4]  
Chen Y.-C., 2017, Biostatistics & Epidemiology, V1, P161, DOI [10.1080/24709360.2017.1396742, DOI 10.1080/24709360.2017.1396742]
[5]  
Defard Thomas, 2021, Pattern Recognition. ICPR International Workshops and Challenges. Proceedings. Lecture Notes in Computer Science (LNCS 12664), P475, DOI 10.1007/978-3-030-68799-1_35
[6]   Toward Supervised Anomaly Detection [J].
Goernitz, Nico ;
Kloft, Marius ;
Rieck, Konrad ;
Brefeld, Ulf .
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2013, 46 :235-262
[7]   A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data [J].
Goldstein, Markus ;
Uchida, Seiichi .
PLOS ONE, 2016, 11 (04)
[8]  
Hendrycks D, 2019, Arxiv, DOI [arXiv:1812.04606, 10.48550/arXiv.1812.04606]
[9]   A Survey on Contrastive Self-Supervised Learning [J].
Jaiswal, Ashish ;
Babu, Ashwin Ramesh ;
Zadeh, Mohammad Zaki ;
Banerjee, Debapriya ;
Makedon, Fillia .
TECHNOLOGIES, 2021, 9 (01)
[10]  
Khosla P, 2020, ADV NEUR IN, V33