Hamiltonian analysis in Lie-Poisson gauge theory

被引:1
|
作者
Bascone, Francesco [1 ]
Kurkov, Maxim [1 ,2 ]
机构
[1] INFN, Sez Napoli, Complesso Univ Monte S Angelo Edificio 6,via Cinti, I-80126 Naples, Italy
[2] Univ Napoli Federico II, Dipartimento Fis E Pancini, Complesso Univ Monte S Angelo Edificio 6,Via Cinti, I-80126 Naples, Italy
关键词
noncommutative geometry; gauge theory;
D O I
10.1142/S0219887824501081
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Lie-Poisson gauge formalism provides a semiclassical description of noncommutative U(1) gauge theory with Lie algebra type noncommutativity. Using the Dirac approach to constrained Hamiltonian systems, we focus on a class of Lie-Poisson gauge models, which exhibit an admissible Lagrangian description. The underlying noncommutativity is supposed to be purely spatial. Analyzing the constraints, we demonstrate that these models have as many physical degrees of freedom as there are present in the Maxwell theory.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Lie-Poisson gauge theories and κ-Minkowski electrodynamics
    V. G. Kupriyanov
    M. A. Kurkov
    P. Vitale
    Journal of High Energy Physics, 2023
  • [2] Lie-Poisson gauge theories and κ-Minkowski electrodynamics
    Kupriyanov, V. G.
    Kurkov, M. A.
    Vitale, P.
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (11)
  • [3] Poisson gauge theory
    Kupriyanov, Vladislav G.
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (09)
  • [4] Poisson gauge theory
    Vladislav G. Kupriyanov
    Journal of High Energy Physics, 2021
  • [5] On the L∞ structure of Poisson gauge theory
    Abla, O.
    Kupriyanov, V. G.
    Kurkov, M. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (38)
  • [6] Poisson Chern-Simons gauge theory
    Morariu, B
    JOURNAL OF HIGH ENERGY PHYSICS, 2001, (10):
  • [7] GAUGE THEORY ON A SPACE WITH LINEAR LIE TYPE FUZZINESS
    Khorrami, Mohammad
    Fatollahi, Amir H.
    Shariati, Ahmad
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2013, 28 (08):
  • [8] Noncommutative induced gauge theory
    A. de Goursac
    J.-C. Wallet
    R. Wulkenhaar
    The European Physical Journal C, 2007, 51 : 977 - 987
  • [9] NONCOMMUTATIVE DIFFERENTIALS ON POISSON-LIE GROUPS AND PRE-LIE ALGEBRAS
    Majid, Shahn
    Tao, Wen-Qing
    PACIFIC JOURNAL OF MATHEMATICS, 2016, 284 (01) : 213 - 256
  • [10] Lie groupoids in classical field theory II: Gauge theories, minimal coupling and Utiyama's theorem
    Costa, Bruno T.
    Forger, Michael
    Pegas, Luiz Henrique P.
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 169