Symmetry and topology of hyperbolic Haldane models

被引:18
作者
Chen, Anffany [1 ,2 ]
Guan, Yifei [3 ]
Lenggenhager, Patrick M. [4 ,5 ,6 ]
Maciejko, Joseph [1 ,2 ]
Boettcher, Igor [1 ,2 ]
Bzdusek, Tomas [4 ,5 ]
机构
[1] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada
[2] Univ Alberta, Theoret Phys Inst, Edmonton, AB T6G 2E1, Canada
[3] Ecole Polytech Fed Lausanne EPFL, Inst Phys, CH-1015 Lausanne, Switzerland
[4] Univ Zurich, Dept Phys, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[5] Paul Scherrer Inst, Condensed Matter Theory Grp, CH-5232 Villigen, Switzerland
[6] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
基金
加拿大自然科学与工程研究理事会;
关键词
LANDAU-LEVELS; HALL; AUTOMORPHISMS; NUMBER; PHASE;
D O I
10.1103/PhysRevB.108.085114
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Particles hopping on a two-dimensional hyperbolic lattice feature unconventional energy spectra and wave functions that provide a largely uncharted platform for topological phases of matter beyond the Euclidean paradigm. Using real-space topological markers as well as Chern numbers defined in the higher-dimensional momentum space of hyperbolic band theory, we construct and investigate hyperbolic Haldane models, which are generalizations of Haldane's honeycomb-lattice model to various hyperbolic lattices. We present a general framework to characterize point-group symmetries in hyperbolic tight-binding models, and use this framework to constrain the multiple first and second Chern numbers in momentum space. We observe several topological gaps characterized by first Chern numbers of value 1 and 2. The momentum-space Chern numbers respect the predicted symmetry constraints and agree with real-space topological markers, indicating a direct connection to observables such as the number of chiral edge modes. With our large repertoire of models, we further demonstrate that the topology of hyperbolic Haldane models is trivialized for lattices with strong negative curvature.
引用
收藏
页数:42
相关论文
共 89 条
  • [2] [Anonymous], 1879, Math. Annalen, DOI 10.1007/BF01677143
  • [3] Holography on tessellations of hyperbolic space
    Asaduzzaman, Muhammad
    Catterall, Simon
    Hubisz, Jay
    Nelson, Roice
    Unmuth-Yockey, Judah
    [J]. PHYSICAL REVIEW D, 2020, 102 (03):
  • [4] Selberg trace formula in hyperbolic band theory
    Attar, Adil
    Boettcher, Igor
    [J]. PHYSICAL REVIEW E, 2022, 106 (03)
  • [5] Baez J., 1994, Gauge Fields, Knots and Gravity
  • [6] Breitenlohner-Freedman Bound on Hyperbolic filings
    Basteiro, Pablo
    Dusel, Felix
    Erdmenger, Johanna
    Herdt, Dietmar
    Hinrichsen, Haye
    Meyer, Rene
    Wuerzburg, Manuel Schrauth Julius-Maximilians-Universitaet
    [J]. PHYSICAL REVIEW LETTERS, 2023, 130 (09)
  • [7] Basteiro P, 2022, Arxiv, DOI arXiv:2212.11292
  • [8] Towards explicit discrete holography: Aperiodic spin chains from hyperbolic tilings
    Basteiro, Pablo
    Di Giulio, Giuseppe
    Erdmenger, Johanna
    Karl, Jonathan
    Meyer, Rene
    Xian, Zhuo-Yu
    [J]. SCIPOST PHYSICS, 2022, 13 (05):
  • [10] Circuit Quantum Electrodynamics in Hyperbolic Space: From Photon Bound States to Frustrated Spin Models
    Bienias, Przemyslaw
    Boettcher, Igor
    Belyansky, Ron
    Kollar, Alicia J.
    Gorshkov, Alexey, V
    [J]. PHYSICAL REVIEW LETTERS, 2022, 128 (01)