The effect of interface structures on deformation behavior of Cu/Ni multilayer by molecular dynamics

被引:2
作者
Pang, Weiwei [1 ]
Liu, Aosong [1 ]
Yang, Kai [1 ]
Chen, Renbin [1 ]
Feng, Xiaotong [1 ]
机构
[1] Hebei Univ Technol, Sch Mat Sci & Engn, Tianjin Key Lab Mat Laminating Fabricat & Interfac, Tianjin 300130, Peoples R China
基金
中国国家自然科学基金;
关键词
Simulation; Heterostructure; Strength; Dislocations; Composite; STRAIN-RATE; MECHANICAL-PROPERTIES; TENSILE DEFORMATION; THICKNESS; STRENGTH; TEMPERATURE; COMPOSITES; NUCLEATION; DUCTILITY; FRACTURE;
D O I
10.1557/s43578-024-01291-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Molecular dynamics investigated the effect of interface structures on deformation behavior of Cu/Ni multilayer. Interface structures of (1 over bar 11 over bar )\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\bar{1}1\bar{1}})$$\end{document}-model, (001)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(001)}$$\end{document}-model, and (1 over bar 10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( {\bar{1}10})$$\end{document}-model display triangular, square, and rectangular, respectively. ((1 over bar 11 over bar )\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\bar{1}1\bar{1}})$$\end{document}-model has the largest compressive strength and (001)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(}001{)}$$\end{document}-model has the largest compressive strain. For three models, plastic yields are triggered by new lattice dislocation nucleation, interfacial misfit dislocation decomposition, and interfacial misfit dislocation slip, respectively, plastic processes are dominated by leading and trailing dislocations, leading dislocations, leading and trailing dislocations, respectively. During plastic deformation process, Lomer-Cottrell locks and Hirth locks formed in (001)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({001})$$\end{document}-model, as well as necklace-like dislocation segments formed in (1 over bar 10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( {\bar{1}10})$$\end{document}-model partly harden the multilayer. The barrier for dislocation crossing interface in (1 over bar 11 over bar )\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( {\bar{1}1\bar{1}})$$\end{document}-model is the largest. The calculated dislocation density and interface thickness of 1 over bar 11 over bar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\overline{1}1\overline{1}} \right)$$\end{document}-model are the largest, followed by (001)-model and (1 over bar 10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\bar{1}10})$$\end{document}-model. The sensitivity of different models to strain rate, temperature, and layer thickness is also discussed.
引用
收藏
页码:1057 / 1072
页数:16
相关论文
共 50 条
  • [41] Effect of notch depth on the mechanical behavior of Cu50Zr50 metallic glasses revealed by molecular dynamics simulations
    Yang, G. J.
    Xu, B.
    Qi, C.
    Kong, L. T.
    Li, J. F.
    INTERMETALLICS, 2018, 93 : 303 - 311
  • [42] Interface Diffusion Behavior of Ti/Ni Multilayer Composites
    Zhang Zhijuan
    Zhang Bing
    Shang Xiaodi
    Wang Qiuyu
    Wang Le
    Wang Kuaishe
    RARE METAL MATERIALS AND ENGINEERING, 2019, 48 (03) : 923 - 930
  • [43] Molecular dynamics studies of the effect of intermediate Fe layer thickness on the enhanced strength and ductility of Cu/Fe/Ni multilayer
    Pang, Weiwei
    Feng, Xiaotong
    Chen, Renbin
    Liu, Aosong
    Xin, Kai
    PHYSICA SCRIPTA, 2023, 98 (07)
  • [44] Molecular dynamics simulation of shock-induced plastic deformation and spallation behavior of Cu/Cu64Zr36 crystalline/amorphous composites
    Li, Yun-Li
    Wu, Wen-Ping
    Sopu, Daniel
    Eckert, Juergen
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2025, 647
  • [45] Mechanical mechanism and deformation behavior of polycrystalline and gradient Ni50-xTi50Alx alloys using molecular dynamics
    Chang, Man-Ping
    Lu, Yu-Sheng
    Fang, Te-Hua
    MATERIALS TODAY COMMUNICATIONS, 2021, 28
  • [46] Effect of Ni Interlayer on the Interface Toughening and Thermal Stability of Cu/Al/Cu Clad Composites
    Kim, Hyung Jin
    Hong, Sun Ig
    METALS AND MATERIALS INTERNATIONAL, 2019, 25 (01) : 94 - 104
  • [47] Deformation Behavior of Pure Cu and Cu-Ni-Si Alloy Evaluated by Micro-Tensile Testing
    Yanagida, Sari
    Araki, Akiyoshi
    Chang, Tso-Fu Mark
    Chen, Chun-Yi
    Nagoshi, Takashi
    Kobayashi, Equo
    Hosoda, Hideki
    Sato, Tatsuo
    Sone, Masato
    MATERIALS TRANSACTIONS, 2016, 57 (11) : 1897 - 1901
  • [48] Molecular Dynamics Simulation of the Structure and Deformation Behavior of γ/α2 Interface in TiAl Alloys
    Tu Aidong
    Teng Chunyu
    Wang Hao
    Xu Dongsheng
    Fu Yun
    Ren Zhanyong
    Yang Rui
    ACTA METALLURGICA SINICA, 2019, 55 (02) : 291 - 298
  • [49] Effect of Temperature on Deformation and Fracture Behaviour of Nanostructured Polycrystalline Ni Under Tensile Hydrostatic Stress by Molecular Dynamics Simulation
    Pei, Linqing
    Lu, Cheng
    Tang, Qian
    Zhang, Yuanxun
    Li, Jiaqing
    Zhang, Che
    Zhao, Xing
    Tieu, Kiet
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2019, 19 (05) : 2723 - 2731
  • [50] High strain-rate effect on microstructure evolution and plasticity of aluminum 5052 alloy nano-multilayer: A molecular dynamics study
    Dang Thi Hong Hue
    Van-Khanh Tran
    Van-Lam Nguyen
    Le Van Lich
    Van-Hai Dinh
    Trong-Giang Nguyen
    VACUUM, 2022, 201