The effect of interface structures on deformation behavior of Cu/Ni multilayer by molecular dynamics

被引:2
作者
Pang, Weiwei [1 ]
Liu, Aosong [1 ]
Yang, Kai [1 ]
Chen, Renbin [1 ]
Feng, Xiaotong [1 ]
机构
[1] Hebei Univ Technol, Sch Mat Sci & Engn, Tianjin Key Lab Mat Laminating Fabricat & Interfac, Tianjin 300130, Peoples R China
基金
中国国家自然科学基金;
关键词
Simulation; Heterostructure; Strength; Dislocations; Composite; STRAIN-RATE; MECHANICAL-PROPERTIES; TENSILE DEFORMATION; THICKNESS; STRENGTH; TEMPERATURE; COMPOSITES; NUCLEATION; DUCTILITY; FRACTURE;
D O I
10.1557/s43578-024-01291-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Molecular dynamics investigated the effect of interface structures on deformation behavior of Cu/Ni multilayer. Interface structures of (1 over bar 11 over bar )\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\bar{1}1\bar{1}})$$\end{document}-model, (001)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(001)}$$\end{document}-model, and (1 over bar 10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( {\bar{1}10})$$\end{document}-model display triangular, square, and rectangular, respectively. ((1 over bar 11 over bar )\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\bar{1}1\bar{1}})$$\end{document}-model has the largest compressive strength and (001)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(}001{)}$$\end{document}-model has the largest compressive strain. For three models, plastic yields are triggered by new lattice dislocation nucleation, interfacial misfit dislocation decomposition, and interfacial misfit dislocation slip, respectively, plastic processes are dominated by leading and trailing dislocations, leading dislocations, leading and trailing dislocations, respectively. During plastic deformation process, Lomer-Cottrell locks and Hirth locks formed in (001)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({001})$$\end{document}-model, as well as necklace-like dislocation segments formed in (1 over bar 10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( {\bar{1}10})$$\end{document}-model partly harden the multilayer. The barrier for dislocation crossing interface in (1 over bar 11 over bar )\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( {\bar{1}1\bar{1}})$$\end{document}-model is the largest. The calculated dislocation density and interface thickness of 1 over bar 11 over bar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\overline{1}1\overline{1}} \right)$$\end{document}-model are the largest, followed by (001)-model and (1 over bar 10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\bar{1}10})$$\end{document}-model. The sensitivity of different models to strain rate, temperature, and layer thickness is also discussed.
引用
收藏
页码:1057 / 1072
页数:16
相关论文
共 50 条
  • [31] Deformation mechanism of MWCNT/Ni composites under shear deformation: a molecular dynamics study
    Zuo, Jiajia
    Hu, Yaxuan
    Wu, Binhe
    Shu, Rui
    Shu, Baipo
    MATERIALS RESEARCH EXPRESS, 2024, 11 (11)
  • [32] Self-diffusion and interface diffusion in crystalline and amorphous Ni/Ti multilayer: A molecular dynamics study
    Biswas, A.
    Bhattacharyya, D.
    JOURNAL OF APPLIED PHYSICS, 2025, 137 (08)
  • [33] Molecular dynamics simulation study of the effect of grain size on the deformation behavior of nanocrystalline body-centered cubic iron
    Jeon, Jong Bae
    Lee, Byeong-Joo
    Chang, Young Won
    SCRIPTA MATERIALIA, 2011, 64 (06) : 494 - 497
  • [34] Hot deformation behavior of Cu/Al laminated composites under interface constraint effect
    Liu, Shuaiyang
    Wang, Aiqin
    Liang, Tingting
    Xie, Jingpei
    MATERIALS RESEARCH EXPRESS, 2018, 5 (06):
  • [35] Investigation of coordinated behavior of deformation at the interface of Cu-Al laminated composite
    Wang, Zheyou
    Bian, Yi
    Yang, Mingxu
    Ma, Ruina
    Fan, Yongzhe
    Du, An
    Zhao, Xue
    Cao, Xiaoming
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 24 : 6545 - 6557
  • [36] Interface Microstructure and Deformation Behavior of an Al-Cu Dissimilar Metal Plate
    Lee, Kwang Seok
    Lee, Su Eun
    Kim, Jung Su
    Kim, Min Jung
    Bae, Dong Hyun
    Kwon, Yong-Nam
    KOREAN JOURNAL OF METALS AND MATERIALS, 2013, 51 (07): : 535 - 545
  • [37] Deformation Mechanisms Dominated by Decomposition of an Interfacial Misfit Dislocation Network in Ni/Ni3Al Multilayer Structures
    Zhang, Zhiwei
    Zhang, Xingyi
    Yang, Rong
    Wang, Jun
    Lu, Chunsheng
    MATERIALS, 2024, 17 (16)
  • [38] Tensile behavior of γ/α2 interface system in lamellar TiAl alloy via molecular dynamics
    Li, Wen
    Yin, Yajun
    Xu, Qian
    Zhou, Jianxin
    Nan, Hai
    Ji, Xiaoyuan
    Shen, Xu
    Feng, Xin
    Yu, Wen
    Tu, Zhixin
    Pang, Nan
    COMPUTATIONAL MATERIALS SCIENCE, 2019, 159 : 397 - 402
  • [39] Deformation evolution of Cu/Ta nanoscale multilayer during nanoindentation by a molecular dynamics study
    Wang, Junyi
    Shi, Junqin
    Lu, Yang
    Jin, Ge
    Wang, Jiahang
    Jiang, Yuxuan
    Zhou, Qing
    SURFACE & COATINGS TECHNOLOGY, 2022, 441
  • [40] Molecular dynamics study of plastic deformation mechanism in Cu/Ag multilayers
    Tian, Yuan-Yuan
    Li, Jia
    Hu, Ze-Ying
    Wang, Zhi-Peng
    Fang, Qi-Hong
    CHINESE PHYSICS B, 2017, 26 (12)