The effect of interface structures on deformation behavior of Cu/Ni multilayer by molecular dynamics

被引:2
作者
Pang, Weiwei [1 ]
Liu, Aosong [1 ]
Yang, Kai [1 ]
Chen, Renbin [1 ]
Feng, Xiaotong [1 ]
机构
[1] Hebei Univ Technol, Sch Mat Sci & Engn, Tianjin Key Lab Mat Laminating Fabricat & Interfac, Tianjin 300130, Peoples R China
基金
中国国家自然科学基金;
关键词
Simulation; Heterostructure; Strength; Dislocations; Composite; STRAIN-RATE; MECHANICAL-PROPERTIES; TENSILE DEFORMATION; THICKNESS; STRENGTH; TEMPERATURE; COMPOSITES; NUCLEATION; DUCTILITY; FRACTURE;
D O I
10.1557/s43578-024-01291-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Molecular dynamics investigated the effect of interface structures on deformation behavior of Cu/Ni multilayer. Interface structures of (1 over bar 11 over bar )\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\bar{1}1\bar{1}})$$\end{document}-model, (001)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(001)}$$\end{document}-model, and (1 over bar 10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( {\bar{1}10})$$\end{document}-model display triangular, square, and rectangular, respectively. ((1 over bar 11 over bar )\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\bar{1}1\bar{1}})$$\end{document}-model has the largest compressive strength and (001)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(}001{)}$$\end{document}-model has the largest compressive strain. For three models, plastic yields are triggered by new lattice dislocation nucleation, interfacial misfit dislocation decomposition, and interfacial misfit dislocation slip, respectively, plastic processes are dominated by leading and trailing dislocations, leading dislocations, leading and trailing dislocations, respectively. During plastic deformation process, Lomer-Cottrell locks and Hirth locks formed in (001)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({001})$$\end{document}-model, as well as necklace-like dislocation segments formed in (1 over bar 10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( {\bar{1}10})$$\end{document}-model partly harden the multilayer. The barrier for dislocation crossing interface in (1 over bar 11 over bar )\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( {\bar{1}1\bar{1}})$$\end{document}-model is the largest. The calculated dislocation density and interface thickness of 1 over bar 11 over bar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\overline{1}1\overline{1}} \right)$$\end{document}-model are the largest, followed by (001)-model and (1 over bar 10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\bar{1}10})$$\end{document}-model. The sensitivity of different models to strain rate, temperature, and layer thickness is also discussed.
引用
收藏
页码:1057 / 1072
页数:16
相关论文
共 50 条
  • [21] Effects of interfacial defect on deformation and mechanical properties of Cu/Ni bilayer-A molecular dynamics study
    Wu, Cheng-Da
    Huang, Bo-Xun
    Li, He-Xing
    THIN SOLID FILMS, 2020, 707
  • [22] Molecular dynamics simulation study on the tensile deformation behavior of nanotwinned Cu-Ag alloy
    Li, Haifeng
    Xie, Haofeng
    Zhao, Yizhi
    Zhang, Wenjing
    Huang, Lue
    Yuan, Yi
    Chu, Hao
    Mi, Xujun
    MATERIALS TODAY COMMUNICATIONS, 2025, 45
  • [23] Effect of interface type on deformation mechanisms of γ-TiAl alloy under different temperatures and strain rates by molecular dynamics simulation
    Shi, Junqin
    Xu, Lulu
    Lu, Yang
    Li, Lulu
    Chen, Biqiang
    Lu, Junjie
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2024, 304
  • [24] An investigation of the tensile deformation and failure of an epoxy/Cu interface using coarse-grained molecular dynamics simulations
    Yang, Shaorui
    Qu, Jianmin
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2014, 22 (06)
  • [25] Effect of Grain Size and Twin Boundary Spacing on Plastic Deformation of Nano-polycrystalline Al Alloy by Molecular Dynamics Study
    Ren Junqiang
    Yang Dan
    Wang Qi
    Lu Xuefeng
    Zhang Xudong
    Xue Hongtao
    Tang Fuling
    Ding Yutian
    RARE METAL MATERIALS AND ENGINEERING, 2022, 51 (07) : 2436 - 2445
  • [26] Molecular dynamics simulation of nanoindentation on Cu/Ni nanotwinned multilayer films using a spherical indenter
    Fu, Tao
    Peng, Xianghe
    Chen, Xiang
    Weng, Shayuan
    Hu, Ning
    Li, Qibin
    Wang, Zhongchang
    SCIENTIFIC REPORTS, 2016, 6
  • [27] Effect of fiber surface functionalization on shear behavior at carbon fiber/epoxy interface through molecular dynamics analysis
    Wang, Hao
    Jin, Kai
    Wang, Chen
    Guo, Xunzhong
    Chen, Zhong
    Tao, Jie
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2019, 126
  • [28] Influence of interface on deformation compatibility of a heterogeneous Cu/ Al nanoscale multilayer
    Liu, Xuepeng
    Yan, Jiahao
    MATERIALS TODAY COMMUNICATIONS, 2024, 40
  • [29] Effects of different loading methods in molecular dynamics on deformation behavior of polymer crystals
    Yoshida, Koki
    Kageyama, Kensuke
    Sakai, Takenobu
    MECHANICS OF TIME-DEPENDENT MATERIALS, 2024, 28 (03) : 1583 - 1595
  • [30] Impact of deformation on the atomic structures and dynamics of a Cu-Zr metallic glass: A molecular dynamics study
    Zhang, Y.
    Mendelev, M. I.
    Wang, C. Z.
    Ott, R.
    Zhang, F.
    Besser, M. F.
    Ho, K. M.
    Kramer, M. J.
    PHYSICAL REVIEW B, 2014, 90 (17):