The effect of interface structures on deformation behavior of Cu/Ni multilayer by molecular dynamics

被引:2
作者
Pang, Weiwei [1 ]
Liu, Aosong [1 ]
Yang, Kai [1 ]
Chen, Renbin [1 ]
Feng, Xiaotong [1 ]
机构
[1] Hebei Univ Technol, Sch Mat Sci & Engn, Tianjin Key Lab Mat Laminating Fabricat & Interfac, Tianjin 300130, Peoples R China
基金
中国国家自然科学基金;
关键词
Simulation; Heterostructure; Strength; Dislocations; Composite; STRAIN-RATE; MECHANICAL-PROPERTIES; TENSILE DEFORMATION; THICKNESS; STRENGTH; TEMPERATURE; COMPOSITES; NUCLEATION; DUCTILITY; FRACTURE;
D O I
10.1557/s43578-024-01291-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Molecular dynamics investigated the effect of interface structures on deformation behavior of Cu/Ni multilayer. Interface structures of (1 over bar 11 over bar )\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\bar{1}1\bar{1}})$$\end{document}-model, (001)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(001)}$$\end{document}-model, and (1 over bar 10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( {\bar{1}10})$$\end{document}-model display triangular, square, and rectangular, respectively. ((1 over bar 11 over bar )\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\bar{1}1\bar{1}})$$\end{document}-model has the largest compressive strength and (001)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(}001{)}$$\end{document}-model has the largest compressive strain. For three models, plastic yields are triggered by new lattice dislocation nucleation, interfacial misfit dislocation decomposition, and interfacial misfit dislocation slip, respectively, plastic processes are dominated by leading and trailing dislocations, leading dislocations, leading and trailing dislocations, respectively. During plastic deformation process, Lomer-Cottrell locks and Hirth locks formed in (001)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({001})$$\end{document}-model, as well as necklace-like dislocation segments formed in (1 over bar 10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( {\bar{1}10})$$\end{document}-model partly harden the multilayer. The barrier for dislocation crossing interface in (1 over bar 11 over bar )\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( {\bar{1}1\bar{1}})$$\end{document}-model is the largest. The calculated dislocation density and interface thickness of 1 over bar 11 over bar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\overline{1}1\overline{1}} \right)$$\end{document}-model are the largest, followed by (001)-model and (1 over bar 10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\bar{1}10})$$\end{document}-model. The sensitivity of different models to strain rate, temperature, and layer thickness is also discussed.
引用
收藏
页码:1057 / 1072
页数:16
相关论文
共 50 条
  • [1] The effect of interface structures on deformation behavior of Cu/Ni multilayer by molecular dynamics
    Weiwei Pang
    Aosong Liu
    Kai Yang
    Renbin Chen
    Xiaotong Feng
    Journal of Materials Research, 2024, 39 : 1057 - 1072
  • [2] The effect of Fe solute atom on interface structure and deformation behavior of Cu/FexNi1-x layered composites by molecular dynamics
    Pang, Weiwei
    Yang, Kai
    Liu, Aosong
    Han, Fangyuan
    MATERIALS TODAY COMMUNICATIONS, 2024, 40
  • [3] The Laminated/Network Interface Design and Deformation Behavior of Multilayer Steel
    Ding, Jiale
    Liu, Baoxi
    Zhang, Boyang
    Zhao, Jianfeng
    Li, Bo
    Feng, Jianhang
    Ji, Puguang
    Luo, Xing
    Yin, Fuxing
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2024, 55 (08): : 3107 - 3122
  • [4] Molecular Dynamics Analyses of Deformation Behavior of Long-Period-Stacking-Ordered Structures
    Matsumoto, Ryosuke
    Uranagase, Masayuki
    Miyazaki, Noriyuki
    MATERIALS TRANSACTIONS, 2013, 54 (05) : 686 - 692
  • [5] Molecular dynamics study of deformation behavior of crystalline Cu/amorphous Cu50Zr50 nanolaminates
    Song, H. Y.
    Xu, J. J.
    Zhang, Y. G.
    Li, S.
    Wang, D. H.
    Li, Y. L.
    MATERIALS & DESIGN, 2017, 127 : 173 - 182
  • [6] Effect of the Dislocation Dipoles with Different Arms on the Graphene Deformation Behavior: Molecular Dynamics
    Akhunova, A. Kh.
    Baimova, Yu. A.
    TECHNICAL PHYSICS, 2024, 69 (07) : 1878 - 1885
  • [7] Thermal diffusion behavior of Fe/Cu/Ni multilayer coatings: a molecular dynamics study
    Dai, Guixin
    Wu, Shiping
    Huang, Xixi
    Wang, Mingjie
    Teng, Xiangqing
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2022, 30 (06)
  • [8] Phase transformation and interface fracture of Cu/Ta multilayers: A molecular dynamics study
    Tran, Anh-Son
    ENGINEERING FRACTURE MECHANICS, 2020, 239
  • [9] Thickness effect of graphene film on optimizing the interface and mechanical properties of Cu/Ni multilayer composites
    Zhang, X.
    Xu, C. Y.
    Gao, K.
    Liu, B. X.
    Ji, P. G.
    He, J. N.
    Wang, G. K.
    Yin, F. X.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 798
  • [10] MOLECULAR DYNAMICS SIMULATION OF TENSILE DEFORMATION OF NANOMETER MULTILAYER Cu/Ta MATERIALS
    Jianian, Hu
    Haotian, Zhang
    Youlin, Zhu
    Peibo, Li
    Guoqiang, Luo
    Chuanbin, Wang
    Qiang, Shen
    Lianmeng, Zhang
    MATERIALI IN TEHNOLOGIJE, 2022, 56 (04): : 415 - 422