Slow-Fast Systems with an Equilibrium Near the Folded Slow Manifold

被引:0
|
作者
Gelfreikh, Natalia G. [1 ]
Ivanov, Alexey V. [1 ]
机构
[1] St Petersburg State Univ, 7-9 Universitetskaya Nab, St Petersburg 199034, Russia
关键词
slow-fast systems; period-doubling bifurcation; SINGULAR PERTURBATION-THEORY; STABILITY LOSS; OSCILLATIONS; PERSISTENCE;
D O I
10.1134/S156035472354002X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a slow-fast system with two slow and one fast variables.We assume that the slow manifold of the system possesses a fold and there is an equilibrium of the system in a small neighborhood of the fold. We derive a normal form for the systemin a neighborhood of the pair "equilibrium-fold"and study the dynamics of the normal form. In particular, as the ratio of two time scales tends to zero we obtain an asymptotic formula for the Poincare mapand calculate the parameter values for the first period-doubling bifurcation. The theory is applied to a generalization of the FitzHugh - Nagumo system.
引用
收藏
页码:376 / 403
页数:28
相关论文
共 50 条
  • [11] Numerical Continuation Techniques for Planar Slow-Fast Systems
    De Maesschalck, P.
    Desroches, M.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2013, 12 (03): : 1159 - 1180
  • [12] Formal normal form of Ak slow-fast systems
    Jardon-Kojakhmetov, Hildeberto
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (09) : 795 - 800
  • [13] Polynomial slow-fast systems on the Poincaré-Lyapunov sphere
    Perez, Otavio Henrique
    da Silva, Paulo Ricardo
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (02): : 1527 - 1552
  • [14] Exact model reduction by a slow-fast decomposition of nonlinear mechanical systems
    Haller, George
    Ponsioen, Sten
    NONLINEAR DYNAMICS, 2017, 90 (01) : 617 - 647
  • [15] REDUCTION OF SLOW-FAST PERIODIC SYSTEMS WITH APPLICATIONS TO POPULATION DYNAMICS MODELS
    Marva, M.
    Poggiale, J. -C.
    Bravo De La Parra, R.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (10)
  • [16] Fractal dimensions and two-dimensional slow-fast systems
    Huzak, Renato
    Crnkovic, Vlatko
    Vlah, Domagoj
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (02)
  • [17] Mixed-mode oscillations for slow-fast perturbed systems
    Liu, Yaru
    Liu, Shenquan
    Lu, Bo
    Kurths, Juergen
    PHYSICA SCRIPTA, 2021, 96 (12)
  • [18] PSEUDO-ABELIAN INTEGRALS ON SLOW-FAST DARBOUX SYSTEMS
    Bobienski, Marcin
    Mardesic, Pavao
    Novikov, Dmitry
    ANNALES DE L INSTITUT FOURIER, 2013, 63 (02) : 417 - 430
  • [19] The central limit theorem for slow-fast systems with Levy noise
    Yang, Xiaoyu
    Xu, Yong
    Wang, Ruifang
    Jiao, Zhe
    APPLIED MATHEMATICS LETTERS, 2022, 128
  • [20] Stabilization of a class of slow-fast control systems at non-hyperbolic points
    Jardon-Kojakhmetov, Hildeberto
    Scherpen, Jacquelien M. A.
    del Puerto-Flores, Dunstano
    AUTOMATICA, 2019, 99 : 13 - 21