Few-shot object detection via class encoding and multi-target decoding

被引:1
|
作者
Guo, Xueqiang [1 ]
Yang, Hanqing [1 ]
Wei, Mohan [1 ]
Ye, Xiaotong [1 ]
Zhang, Yu [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou, Peoples R China
[2] Key Lab Collaborat Sensing & Autonomous Unmanned S, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Class Margin; Few-Shot Object Detection; Multi-Target; Transformer;
D O I
10.1049/csy2.12088
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The task of few-shot object detection is to classify and locate objects through a few annotated samples. Although many studies have tried to solve this problem, the results are still not satisfactory. Recent studies have found that the class margin significantly impacts the classification and representation of the targets to be detected. Most methods use the loss function to balance the class margin, but the results show that the loss-based methods only have a tiny improvement on the few-shot object detection problem. In this study, the authors propose a class encoding method based on the transformer to balance the class margin, which can make the model pay more attention to the essential information of the features, thus increasing the recognition ability of the sample. Besides, the authors propose a multi-target decoding method to aggregate RoI vectors generated from multi-target images with multiple support vectors, which can significantly improve the detection ability of the detector for multi-target images. Experiments on Pascal visual object classes (VOC) and Microsoft Common Objects in Context datasets show that our proposed Few-Shot Object Detection via Class Encoding and Multi-Target Decoding significantly improves upon baseline detectors (average accuracy improvement is up to 10.8% on VOC and 2.1% on COCO), achieving competitive performance. In general, we propose a new way to regulate the class margin between support set vectors and a way of feature aggregation for images containing multiple objects and achieve remarkable results. Our method is implemented on mmfewshot, and the code will be available later.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding
    Sun, Bo
    Li, Banghuai
    Cai, Shengcai
    Yuan, Ye
    Zhang, Chi
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 7348 - 7358
  • [2] Few-Shot Object Detection via Association and DIscrimination
    Cao, Yuhang
    Wang, Jiaqi
    Jin, Ying
    Wu, Tong
    Chen, Kai
    Liu, Ziwei
    Lin, Dahua
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [3] Few-Shot Object Detection via Sample Processing
    Xu, Honghui
    Wang, Xinqing
    Shao, Faming
    Duan, Baoguo
    Zhang, Peng
    IEEE ACCESS, 2021, 9 (09): : 29207 - 29221
  • [4] Few-Shot Object Detection via Knowledge Transfer
    Kim, Geonuk
    Jung, Hong-Gyu
    Lee, Seong-Whan
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 3564 - 3569
  • [5] Few-Shot Object Detection via Metric Learning
    Zhu Min
    Zhang Chongyang
    FOURTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2021), 2022, 12084
  • [6] Few-shot object detection via baby learning
    Vu, Anh-Khoa Nguyen
    Nguyen, Nhat-Duy
    Nguyen, Khanh-Duy
    Nguyen, Vinh-Tiep
    Ngo, Thanh Duc
    Do, Thanh-Toan
    Nguyen, Tam V.
    IMAGE AND VISION COMPUTING, 2022, 120
  • [7] Few-shot Object Detection via Feature Reweighting
    Kang, Bingyi
    Liu, Zhuang
    Wang, Xin
    Yu, Fisher
    Feng, Jiashi
    Darrell, Trevor
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 8419 - 8428
  • [8] FSMT: Few-shot object detection via Multi-Task Decoupled
    Qin, Jiahui
    Xu, Yang
    Fu, Yifan
    Wu, Zebin
    Wei, Zhihui
    PATTERN RECOGNITION LETTERS, 2025, 192 : 8 - 14
  • [9] Few-Shot Object Detection: A Survey
    Antonelli, Simone
    Avola, Danilo
    Cinque, Luigi
    Crisostomi, Donato
    Foresti, Gian Luca
    Galasso, Fabio
    Marini, Marco Raoul
    Mecca, Alessio
    Pannone, Daniele
    ACM COMPUTING SURVEYS, 2022, 54 (11S)
  • [10] Few-Shot Object Counting and Detection
    Thanh Nguyen
    Chau Pham
    Khoi Nguyen
    Minh Hoai
    COMPUTER VISION, ECCV 2022, PT XX, 2022, 13680 : 348 - 365