The Qweak high performance LH2 target

被引:0
作者
Brock, J. [1 ]
Dusa, S. Covrig [1 ]
Dunne, J. A. [2 ]
Keith, C. [1 ]
Meekins, D. [1 ]
Pierce, J. [1 ]
Smith, G. R. [1 ]
Subedi, A. [2 ]
机构
[1] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA
[2] Mississippi State Univ, Mississippi State, MS 39762 USA
关键词
Liquid hydrogen target; Parity-violation; Electron scattering; Density fluctuations; LIQUID-HYDROGEN TARGET; PARITY CONSERVATION;
D O I
10.1016/j.nima.2023.168316
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A high-power liquid hydrogen target was built for the Jefferson Lab Qweak experiment, which measured the tiny parity-violating asymmetry in ep scattering at an incident energy of 1.16 GeV, and a Q2 = 0.025 GeV2. To achieve the luminosity of 1.7 x 1039 cm-2 s-1, a 34.5 cm-long target was used with a beam current of 180 mu A. The ionization energy-loss deposited by the beam in the target was 2.1 kW. The target temperature was controlled to within +/- 0.02 K and the target noise (density fluctuations) near the experiment's beam helicity-reversal rate of 960 Hz was only 53 ppm. The 58 liquid liter target achieved a differential pressure (head) across the pump of 7.6 kPa (11.4 m) and a mass flow of 1.2 +/- 0.3 kg/s (corresponding to a volume flow of 17.4 +/- 3.8 l/s) at the nominal 29 Hz rotation frequency of the recirculating centrifugal pump. We describe aspects of the design, operation, and performance of this target, the highest power LH2target ever used in an electron scattering experiment to date.
引用
收藏
页数:23
相关论文
共 31 条
[1]   The Qweak experimental apparatus [J].
Allison, T. ;
Anderson, M. ;
Androic, D. ;
Armstrong, D. S. ;
Asaturyan, A. ;
Averett, T. ;
Averill, R. ;
Balewski, J. ;
Beaufait, J. ;
Beminiwattha, R. S. ;
Benesch, J. ;
Benmokhtar, F. ;
Bessuille, J. ;
Birchall, J. ;
Bonnelli, E. ;
Bowman, J. D. ;
Brindza, P. ;
Brown, D. B. ;
Carlini, R. D. ;
Cates, G. D. ;
Cavness, B. ;
Clark, G. ;
Cornejo, J. C. ;
Dusa, S. Covrig ;
Dalton, M. M. ;
Davis, C. A. ;
Dean, D. C. ;
Deconinck, W. ;
Diefenbach, J. ;
Dow, K. ;
Dowd, J. F. ;
Dunne, J. A. ;
Dutta, D. ;
Duvall, W. S. ;
Echols, J. R. ;
Elaasar, M. ;
Falk, W. R. ;
Finelli, K. D. ;
Finn, J. M. ;
Gaskell, D. ;
Gericke, M. T. W. ;
Grames, J. ;
Gray, V. M. ;
Grimm, K. ;
Guo, F. ;
Hansknecht, J. ;
Harrison, D. J. ;
Henderson, E. ;
Hoskins, J. R. ;
Ihloff, E. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2015, 781 :105-133
[2]   A high power liquid hydrogen target for the Mainz A4 parity violation experiment [J].
Altarev, I. ;
Schilling, E. ;
Baunack, S. ;
Capozza, L. ;
Diefenbach, J. ;
Grimm, K. ;
Hammel, T. ;
von Harrach, D. ;
Imai, Y. ;
Kabuss, E. M. ;
Kothe, R. ;
Lee, J. H. ;
Lopes Ginja, A. ;
Maas, F. E. ;
Sanchez Lorente, A. ;
Stephan, G. ;
Weinrich, C. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 564 (01) :13-25
[3]  
American Boa Inc, 2008, about us
[4]   Precision measurement of the weak charge of the proton [J].
Androic, D. ;
Armstrong, D. S. ;
Asaturyan, A. ;
Averett, T. ;
Balewski, J. ;
Bartlett, K. ;
Beaufait, J. ;
Beminiwattha, R. S. ;
Benesch, J. ;
Benmokhtar, F. ;
Birchall, J. ;
Carlini, R. D. ;
Cornejo, J. C. ;
Dusa, S. Covrig ;
Dalton, M. M. ;
Davis, C. A. ;
Deconinck, W. ;
Diefenbach, J. ;
Dowd, J. F. ;
Dunne, J. A. ;
Dutta, D. ;
Duvall, W. S. ;
Elaasar, M. ;
Falk, W. R. ;
Finn, J. M. ;
Forest, T. ;
Gal, C. ;
Gaskell, D. ;
Gericke, M. T. W. ;
Grames, J. ;
Gray, V. M. ;
Grimm, K. ;
Guo, F. ;
Hoskins, J. R. ;
Jones, D. ;
Jones, M. ;
Jones, R. ;
Kargiantoulakis, M. ;
King, P. M. ;
Korkmaz, E. ;
Kowalski, S. ;
Leacock, J. ;
Leckey, J. ;
Lee, A. R. ;
Lee, J. H. ;
Lee, L. ;
MacEwan, S. ;
Mack, D. ;
Magee, J. A. ;
Mahurin, R. .
NATURE, 2018, 557 (7704) :207-+
[5]  
[Anonymous], 2008, Fluent computational fluid dynamics software
[6]  
[Anonymous], 2001, JLAB drawing TGT 1010-2001
[7]  
[Anonymous], 2010, ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NB, Rules for Construction of Pressure Vessels
[8]   Determination of the parahydrogen fraction in a liquid hydrogen target using energy-dependent slow neutron transmission [J].
Barron-Palos, L. ;
Alarcon, R. ;
Balascuta, S. ;
Blessinger, C. ;
Bowman, J. D. ;
Chupp, T. E. ;
Covrig, S. ;
Crawford, C. B. ;
Dabaghyan, M. ;
Dadras, J. ;
Dawkins, M. ;
Fox, W. ;
Gericke, M. T. ;
Gillis, R. C. ;
Lauss, B. ;
Leuschner, M. B. ;
Lozowski, B. ;
Mahurin, R. ;
Mason, M. ;
Mei, J. ;
Nann, H. ;
Penttilae, S. I. ;
Ramsay, W. D. ;
Salas-Bacci, A. ;
Santra, S. ;
Seo, P. -N. ;
Sharma, M. ;
Smith, T. ;
Snow, W. M. ;
Wilburn, W. S. ;
Yuan, V. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 659 (01) :579-586
[9]  
Baumeister T, 1967, Marks' standard handbook for mechanical engineers
[10]  
Courts S.S., 2000, Advances in Cryogenic Engineering, V45, P1841