On the occurrence of bursting oscillations in the damping Helmholtz-Rayleigh-Duffing oscillator with slow-changing parametrical and external forcings

被引:0
作者
Zhang, Chun [1 ]
Tang, Qiaoxia [1 ]
机构
[1] Huaiyin Normal Univ, Sch Math Sci, Huaian 223300, Peoples R China
基金
中国国家自然科学基金;
关键词
bursting oscillations; damping helmholtz-rayleigh-duffing oscillator; parametrical and external excitations; bifurcation; slow/fast decomposition method; PASSAGE; BIFURCATION; HOPF;
D O I
10.1088/1402-4896/ad0ae2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Multiple timescale effects can be reflected bursting oscillations in many classical nonlinear oscillators. In this work, we are concerned about the bursting oscillations induced by two timescale effects in the damped Helmholtz-Rayleigh-Duffing oscillator (written as DHRDO for short) excited by slow-changing parametrical and external forcings. By using trigonometric function variation and authenticating the slow excitations as a slowly varying state variable, the time-varying DHRDO can be rewritten as a new time-invariant system. Then, the critical conditions of some typical bifurcations are presented by bifurcation theory. With the help of bifurcation analyses, six bursting patterns, i.e., 'Hopf/Hopf-Hopf/Hopf' bursting, 'fold/Homoclinic-Hopf/Hopf' bursting, 'fold/Homoclinic/Hopf' bursting, 'Hopf/fold/Homoclinic/Hopf' bursting, 'Hopf/Homoclinic/Homoclinic/Hopf' bursting and 'Hopf/Homoclinic/Hopf-Hopf/Homoclinic/Hopf' bursting, are explored by the slow/fast decomposition method and the other techniques. Our findings provide different forms of the excited state oscillation modes as well as the bursting patterns. In addition, we use the numerical simulation to prove the correctness of the theoretical analyses.
引用
收藏
页数:16
相关论文
共 45 条
  • [1] The hidden, period-adding, mixed-mode oscillations and control in a HR neuron under electromagnetic induction
    An, Xinlei
    Qiao, Shuai
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 143
  • [2] Complex mixed-mode oscillations in oscillators sharing nonlinearity
    Asir, M. Paul
    Premraj, D.
    Sathiyadevi, K.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (02)
  • [3] BERTRAM R, 1995, B MATH BIOL, V57, P413, DOI 10.1016/S0092-8240(05)81776-8
  • [4] Reading and modulating cortical beta bursts from motor unit spiking activity
    Bracklein, Mario
    Barsakcioglu, Deren Y.
    Del Vecchio, Alessandro
    Ibanez, Jaime
    Farina, Dario
    [J]. JOURNAL OF NEUROSCIENCE, 2022, 42 (17) : 3611 - 3621
  • [5] Shil'nikov chaos and mixed-mode oscillation in Chua circuit
    Chakraborty, Satyabrata
    Dana, Syamal Kumar
    [J]. CHAOS, 2010, 20 (02)
  • [6] Chandrasekhar S., 1961, Hydrodynamic and Hydromagnetic Stability
  • [7] Canards, relaxation oscillations, and pattern formation in a slow-fast ratio-dependent predator-prey system
    Chowdhury, Pranali Roy
    Banerjee, Malay
    Petrovskii, Sergei
    [J]. APPLIED MATHEMATICAL MODELLING, 2022, 109 : 519 - 535
  • [8] Slow-fast response decomposition of a bi-stable energy harvester
    Cohen, Nadav
    Bucher, Izhak
    Feldman, Michael
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2012, 31 : 29 - 39
  • [9] Emergence of diverse dynamical responses in a fractional-order slow-fast pest-predator model
    Das, Subhashis
    Mahato, Sanat Kumar
    Mondal, Argha
    Kaslik, Eva
    [J]. NONLINEAR DYNAMICS, 2023, 111 (09) : 8821 - 8836
  • [10] Slow passage through homoclinic orbits for the unfolding of a saddle-center bifurcation and the change in the adiabatic invariant
    Diminnie, DC
    Haberman, R
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2002, 162 (1-2) : 34 - 52