Jacobi sums over Galois rings of arbitrary characters and their applications in constructing asymptotically optimal codebooks

被引:0
作者
Xu, Deng-Ming [1 ]
Wang, Gang [2 ]
Mesnager, Sihem [3 ,4 ,5 ]
Gao, You [2 ]
Fu, Fang-Wei [6 ,7 ]
机构
[1] Civil Aviat Univ China, Sino European Inst Aviat Engn, Tianjin 300300, Peoples R China
[2] Civil Aviat Univ China, Coll Sci, Tianjin 300300, Peoples R China
[3] Univ Paris VIII, Dept Math, F-93526 St Denis, France
[4] Univ Sorbonne Paris Nord, Lab Geometry Anal & Applicat, CNRS, UMR 7539,LAGA, F-93430 Villetaneuse, France
[5] Polytech Inst Paris, Telecom Paris, F-91120 Palaiseau, France
[6] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[7] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Galois ring; Additive character; Multiplicative character; Gauss sum; Jacobi sum; Codebook; Maximal cross-correlation amplitude; Welch bound; COMPLEX CODEBOOKS; DIFFERENCE SETS; FRAMES; BOUNDS;
D O I
10.1007/s10623-023-01328-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Codebooks with small maximum cross-correlation amplitudes are used to distinguish the signals from different users in multiple access communication systems in code division. Firstly, this paper studies the Jacobi sums over Galois rings of arbitrary characteristics and completely determines their absolute values. This extends the work by Li et al. (Sci China 56(7):1457-1465, 2013), where the Jacobi sums over some Galois rings with characteristics of a prime square were discussed. It is worth mentioning that the generalization is not trivial, as the Galois rings of arbitrary characteristics have a more complicated structure. Our deterministic construction of codebooks is based on Jacobi sums over Galois rings of arbitrary characteristics, producing asymptotically optimal codebooks for the Welch bound. Finally, compared to the literature, this article proposes for the first time design of codebooks based on Jacobi sums over Galois rings. In addition, the parameters of the presented codebooks are new.
引用
收藏
页码:1051 / 1073
页数:23
相关论文
共 47 条
[1]   Z(4)-Kerdock codes, orthogonal spreads, and extremal euclidean line-sets [J].
Calderbank, AR ;
Cameron, PJ ;
Kantor, WM ;
Seidel, JJ .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1997, 75 :436-480
[2]  
Carlet C, 2000, CODING THEORY, CRYPTOGRAPHY AND RELATED AREAS, P57
[3]  
Christensen O., 2016, INTRO FRAMES RIESZ B
[4]  
Conway J H., 1996, EXP MATH, V5, P139, DOI [10.1080/10586458.1996.10504585, DOI 10.1080/10586458.1996.10504585]
[5]  
DELSARTE P, 1975, PHILIPS RES REP, V30, P91
[6]  
DELSARTE P, 1977, GEOMETRIAE DEDICATA, V6, P363, DOI [DOI 10.1007/BF03187604, DOI 10.1016/B978-0-12-189420-7.50013-X]
[7]   A generic construction of complex codebooks meeting the welch bound [J].
Ding, Cunsheng ;
Feng, Tao .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (11) :4245-4250
[8]   Complex codebooks from combinatorial designs [J].
Ding, Cunsheng .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (09) :4229-4235
[9]   A New Construction of Perfect Nonlinear Functions Using Galois Rings [J].
Feng, Tao .
JOURNAL OF COMBINATORIAL DESIGNS, 2009, 17 (03) :229-239
[10]   Equiangular Tight Frames From Hyperovals [J].
Fickus, Matthew ;
Mixon, Dustin G. ;
Jasper, John .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (09) :5225-5236