Learning based motion artifacts processing in fNIRS: a mini review

被引:6
作者
Zhao, Yunyi [1 ]
Luo, Haiming [1 ]
Chen, Jianan [1 ]
Loureiro, Rui [1 ]
Yang, Shufan [2 ]
Zhao, Hubin [1 ]
机构
[1] UCL, Div Surg & Intervent Sci DSIS, HUB Intelligent Neuroengn, CREATe,IOMS, London, England
[2] Edinburgh Napier Univ, Sch Comp Engn & Built Environm, Edinburgh, Scotland
基金
英国惠康基金; 英国工程与自然科学研究理事会; “创新英国”项目; 欧洲研究理事会;
关键词
fNIRS; brain-computer interfaces; motion artifacts; machine learning; deep learning; evaluation matrix; NEAR-INFRARED SPECTROSCOPY;
D O I
10.3389/fnins.2023.1280590
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This paper provides a concise review of learning-based motion artifacts (MA) processing methods in functional near-infrared spectroscopy (fNIRS), highlighting the challenges of maintaining optimal contact during subject movement, which can lead to MA and compromise data integrity. Traditional strategies often result in reduced reliability of the hemodynamic response and statistical power. Recognizing the limited number of studies focusing on learning-based MA removal, we examine 315 studies, identifying seven pertinent to our focus area. We discuss the current landscape of learning-based MA correction methods and highlight research gaps. Noting the absence of standard evaluation metrics for quality assessment of MA correction, we suggest a novel framework, integrating signal and model quality considerations and employing metrics like Delta Signal-to-Noise Ratio (Delta SNR), confusion matrix, and Mean Squared Error. This work aims to facilitate the application of learning-based methodologies to fNIRS and improve the accuracy and reliability of neurovascular studies.
引用
收藏
页数:7
相关论文
共 50 条
[41]   Autoregressive model based algorithm for correcting motion and serially correlated errors in fNIRS [J].
Barker, Jeffrey W. ;
Aarabi, Ardalan ;
Huppert, Theodore J. .
BIOMEDICAL OPTICS EXPRESS, 2013, 4 (08) :1366-1379
[42]   A study of motion artifacts of Fourier-based image construction [J].
Wang, J ;
Lu, JY .
2005 IEEE ULTRASONICS SYMPOSIUM, VOLS 1-4, 2005, :1439-1442
[43]   Application of machine learning algorithms in municipal solid waste management: A mini review [J].
Xia, Wanjun ;
Jiang, Yanping ;
Chen, Xiaohong ;
Zhao, Rui .
WASTE MANAGEMENT & RESEARCH, 2022, 40 (06) :609-624
[44]   Machine Learning Advances in High-Entropy Alloys: A Mini-Review [J].
Sun, Yibo ;
Ni, Jun .
ENTROPY, 2024, 26 (12)
[45]   Deep Reinforcement Learning for the Control of Robotic Manipulation: A Focussed Mini-Review [J].
Liu, Rongrong ;
Nageotte, Florent ;
Zanne, Philippe ;
de Mathelin, Michel ;
Dresp-Langley, Birgitta .
ROBOTICS, 2021, 10 (01) :1-13
[46]   FPL Demo: A Learning-Based Motion Artefact Detector for Heterogeneous Platforms [J].
Zhao, Yunyi ;
Xia, Yunjia ;
Loureiro, Rui ;
Zhao, Hubin ;
Dolinsky, Uwe ;
Yang, Shufan .
2023 33RD INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS, FPL, 2023, :366-366
[47]   Machine Learning Techniques for Ophthalmic Data Processing: A Review [J].
Sarhan, Mhd Hasan ;
Nasseri, M. Ali ;
Zapp, Daniel ;
Maier, Mathias ;
Lohmann, Chris P. ;
Navab, Nassir ;
Eslami, Abouzar .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (12) :3338-3350
[48]   Analysis of Human Gait Using Hybrid EEG-fNIRS-Based BCI System: A Review [J].
Khan, Haroon ;
Naseer, Noman ;
Yazidi, Anis ;
Eide, Per Kristian ;
Hassan, Hafiz Wajahat ;
Mirtaheri, Peyman .
FRONTIERS IN HUMAN NEUROSCIENCE, 2021, 14
[49]   Deep learning for predicting toxicity of chemicals: a mini review [J].
Tang, Weihao ;
Chen, Jingwen ;
Wang, Zhongyu ;
Xie, Hongbin ;
Hong, Huixiao .
JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART C-ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS, 2018, 36 (04) :252-271
[50]   Application of Machine Learning in Electromagnetics: Mini-Review [J].
Sagar, Md. Samiul Islam ;
Ouassal, Hassna ;
Omi, Asif I. ;
Wisniewska, Anna ;
Jalajamony, Harikrishnan M. ;
Fernandez, Renny E. ;
Sekhar, Praveen K. .
ELECTRONICS, 2021, 10 (22)