Learning based motion artifacts processing in fNIRS: a mini review

被引:6
作者
Zhao, Yunyi [1 ]
Luo, Haiming [1 ]
Chen, Jianan [1 ]
Loureiro, Rui [1 ]
Yang, Shufan [2 ]
Zhao, Hubin [1 ]
机构
[1] UCL, Div Surg & Intervent Sci DSIS, HUB Intelligent Neuroengn, CREATe,IOMS, London, England
[2] Edinburgh Napier Univ, Sch Comp Engn & Built Environm, Edinburgh, Scotland
基金
英国惠康基金; 英国工程与自然科学研究理事会; “创新英国”项目; 欧洲研究理事会;
关键词
fNIRS; brain-computer interfaces; motion artifacts; machine learning; deep learning; evaluation matrix; NEAR-INFRARED SPECTROSCOPY;
D O I
10.3389/fnins.2023.1280590
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This paper provides a concise review of learning-based motion artifacts (MA) processing methods in functional near-infrared spectroscopy (fNIRS), highlighting the challenges of maintaining optimal contact during subject movement, which can lead to MA and compromise data integrity. Traditional strategies often result in reduced reliability of the hemodynamic response and statistical power. Recognizing the limited number of studies focusing on learning-based MA removal, we examine 315 studies, identifying seven pertinent to our focus area. We discuss the current landscape of learning-based MA correction methods and highlight research gaps. Noting the absence of standard evaluation metrics for quality assessment of MA correction, we suggest a novel framework, integrating signal and model quality considerations and employing metrics like Delta Signal-to-Noise Ratio (Delta SNR), confusion matrix, and Mean Squared Error. This work aims to facilitate the application of learning-based methodologies to fNIRS and improve the accuracy and reliability of neurovascular studies.
引用
收藏
页数:7
相关论文
共 50 条
[21]   Investigating the Use of Generative Adversarial Networks-Based Deep Learning for Reducing Motion Artifacts in Cardiac Magnetic Resonance [J].
Ma, Ze-Peng ;
Zhu, Yue-Ming ;
Zhang, Xiao-Dan ;
Zhao, Yong-Xia ;
Zheng, Wei ;
Yuan, Shuang-Rui ;
Li, Gao-Yang ;
Zhang, Tian-Le .
JOURNAL OF MULTIDISCIPLINARY HEALTHCARE, 2025, 18 :787-799
[22]   Removal of Motion Artifacts in Capacitive Electrocardiogram Acquisition: A Review [J].
Sirtoli, Vinicius G. ;
Liamini, Mokhtar ;
Lins, Lucas T. ;
Lessard-Tremblay, Mathieu ;
Cowan, Glenn E. R. ;
Zednik, Ricardo J. ;
Gagnon, Ghyslain .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2023, 17 (03) :394-412
[23]   Review of Motion Artifacts Removing Techniques for Wireless Electrocardiograms [J].
Dargie, Waltenegus ;
Lilienthal, Jannis .
PROCEEDINGS OF 2020 23RD INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2020), 2020, :150-157
[24]   IMPROVING ROBUSTNESS OF DEEP LEARNING BASED MONAURAL SPEECH ENHANCEMENT AGAINST PROCESSING ARTIFACTS [J].
Tan, Ke ;
Wang, DeLiang .
2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, :6914-6918
[25]   Supervised Deep Learning in High Energy Phenomenology: a Mini Review [J].
Abdughani, Murat ;
Ren, Jie ;
Wu, Lei ;
Yang, Jin-Min ;
Zhao, Jun .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2019, 71 (08) :955-990
[26]   Machine learning-based filtering system for fNIRS signals analysis purpose [J].
Pelc, Mariusz ;
Mikolajewski, Dariusz ;
Luckiewicz, Adrian ;
Sudol, Adam ;
Mendon, Patryk ;
Gorzelanczyk, Edward Jacek ;
Kawala-sterniuk, Aleksandra .
BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2025, 73 (01)
[27]   Supervised Deep Learning in High Energy Phenomenology: a Mini Review [J].
木拉提阿不都艾尼 ;
任杰 ;
武雷 ;
杨金民 ;
赵俊 .
CommunicationsinTheoreticalPhysics, 2019, 71 (08) :955-990
[28]   Review on the wearable health-care monitoring system with robust motion artifacts reduction techniques [J].
Prabakaran, Aarthy ;
Rufus, Elizabeth .
SENSOR REVIEW, 2022, 42 (01) :19-38
[29]   Biosignal-Based Machine Learning Predictors of Sepsis: A Mini-Review [J].
Szumilas, M. .
ACTA PHYSICA POLONICA A, 2024, 146 (04) :388-393
[30]   Mini-review: Recent advances in post-translational modification site prediction based on deep learning [J].
Meng, Lingkuan ;
Chan, Wai-Sum ;
Huang, Lei ;
Liu, Linjing ;
Chen, Xingjian ;
Zhang, Weitong ;
Wang, Fuzhou ;
Cheng, Ke ;
Sun, Hongyan ;
Wong, Ka -Chun .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 :3522-3532