Automatic Loss Function Search for Adversarial Unsupervised Domain Adaptation

被引:17
|
作者
Mei, Zhen [1 ]
Ye, Peng [1 ]
Ye, Hancheng [1 ]
Li, Baopu [2 ]
Guo, Jinyang [3 ]
Chen, Tao [1 ]
Ouyang, Wanli [4 ]
机构
[1] Fudan Univ, Sch Informat Sci & Technol, Shanghai 200433, Peoples R China
[2] Oracle, Redwood City, CA 94065 USA
[3] Beihang Univ, Inst Artificial Intelligence, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[4] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
基金
中国国家自然科学基金;
关键词
Training; Search problems; Feature extraction; Task analysis; Optimization; Entropy; Semantics; AutoML; unsupervised domain adaptation; loss function search;
D O I
10.1109/TCSVT.2023.3260246
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Unsupervised domain adaption (UDA) aims to reduce the domain gap between labeled source and unlabeled target domains. Many prior works exploit adversarial learning that leverages pre-designed discriminators to drive the network for aligning distributions between domains. However, most of them do not consider the degeneration of the domain discriminators caused by the gradually dominating gradients of aligned target samples during training, and they still suffer from the cross-domain semantic mismatch problem in the learned feature space. Hence, this paper attempts to understand and solve both issues from the lens of optimization loss and propose an automatic loss function search for adversarial domain adaptation (ALSDA). First, we extend the common adversarial loss by adding an adjustable hyper-parameter that can re-weight the gradients assigned to target samples, so that the domain discriminator can impose consecutive and influential driving forces for domain alignment. Meanwhile, we upgrade the traditional orthogonality loss with class-wisely adjustable hyper-parameters that can strengthen the cross-domain feature separation. Since manually determining the optimal loss functions requires expensive expert efforts, we leverage the popular AutoML to automatically search for the optimal loss functions from a pre-defined novel and unique search space for UDA. Further, to enable the loss function search when the target domain is unlabeled, we introduce a simple-but-effective entropy-guided search strategy with the aid of REINFORCE learning. Extensive experiments on various typical baselines and benchmark datasets such as Office-Home, Office-31, and Birds-31 have been conducted, and the results validate the generalization and superiority of the proposed ALSDA.
引用
收藏
页码:5868 / 5881
页数:14
相关论文
共 50 条
  • [21] Multiscale unsupervised domain adaptation for automatic pancreas segmentation in CT volumes using adversarial learning
    Zhu, Yan
    Hu, Peijun
    Li, Xiang
    Tian, Yu
    Bai, Xueli
    Liang, Tingbo
    Li, Jingsong
    MEDICAL PHYSICS, 2022, 49 (09) : 5799 - 5818
  • [22] Unsupervised Domain Adaptation via Domain-Adaptive Diffusion
    Peng, Duo
    Ke, Qiuhong
    Ambikapathi, ArulMurugan
    Yazici, Yasin
    Lei, Yinjie
    Liu, Jun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 4245 - 4260
  • [23] Learning Transferable Parameters for Unsupervised Domain Adaptation
    Han, Zhongyi
    Sun, Haoliang
    Yin, Yilong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 6424 - 6439
  • [24] Class Discriminative Adversarial Learning for Unsupervised Domain Adaptation
    Zhou, Lihua
    Ye, Mao
    Zhu, Xiatian
    Li, Shuaifeng
    Liu, Yiguang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 4318 - 4326
  • [25] Unsupervised Domain Adaptation with Coupled Generative Adversarial Autoencoders
    Wang, Xiaoqing
    Wang, Xiangjun
    APPLIED SCIENCES-BASEL, 2018, 8 (12):
  • [26] ADVERSARIAL MIXUP SYNTHESIS TRAINING FOR UNSUPERVISED DOMAIN ADAPTATION
    Tang, Yuhua
    Lin, Zhipeng
    Wang, Haotian
    Xu, Liyang
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3727 - 3731
  • [27] UNSUPERVISED DOMAIN ADAPTATION VIA DOMAIN ADVERSARIAL TRAINING FOR SPEAKER RECOGNITION
    Wang, Qing
    Rao, Wei
    Sun, Sining
    Xie, Lei
    Chng, Eng Siong
    Li, Haizhou
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 4889 - 4893
  • [28] Unsupervised Domain Adaptation with Joint Domain-Adversarial Reconstruction Networks
    Chen, Qian
    Du, Yuntao
    Tan, Zhiwen
    Zhang, Yi
    Wang, Chongjun
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT II, 2021, 12458 : 640 - 656
  • [29] Unsupervised Domain Adaptation by Multi-Loss Gap Minimization Learning for Person Re-Identification
    Tao, Xuefeng
    Kong, Jun
    Jiang, Min
    Liu, Tianshan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (07) : 4404 - 4416
  • [30] Progressive Decision Boundary Shifting for Unsupervised Domain Adaptation
    Li, Liang
    Lu, Tongyu
    Sun, Yaoqi
    Gao, Yuhan
    Yan, Chenggang
    Hu, Zhenghui
    Huang, Qingming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 274 - 285