Asymptotics for the critical level and a strong invariance principle for high intensity shot noise fields

被引:0
作者
Lachieze-Rey, Raphael [1 ]
Muirhead, Stephen [2 ]
机构
[1] Univ Paris Cite, Paris, France
[2] Univ Melbourne, Sch Math & Stat, Melbourne, Australia
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2023年 / 59卷 / 03期
基金
澳大利亚研究理事会;
关键词
Shot noise fields; Gaussian fields; Percolation; Strong invariance principle; STRONG APPROXIMATION; PHASE-TRANSITION; PERCOLATION; CONVERGENCE; UNIQUENESS; CROSSINGS; VARIABLES; SETS; LAWS;
D O I
10.1214/22-AIHP1303
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study fine properties of the convergence of a high intensity shot noise field towards the Gaussian field with the same covariance structure. In particular we (i) establish a strong invariance principle, i.e. a quantitative coupling between a high intensity shot noise field and the Gaussian limit such that they are uniformly close on large domains with high probability, and (ii) use this to derive an asymptotic expansion for the critical level above which the excursion sets of the shot noise field percolate.
引用
收藏
页码:1375 / 1397
页数:23
相关论文
共 41 条
[1]   Sharpness of the phase transition for continuum percolation in R2 [J].
Ahlberg, Daniel ;
Tassion, Vincent ;
Teixeira, Augusto .
PROBABILITY THEORY AND RELATED FIELDS, 2018, 172 (1-2) :525-581
[2]   Investigating the Gaussian Convergence of the Distribution of the Aggregate Interference Power in Large Wireless Networks [J].
Aljuaid, Muhammad ;
Yanikomeroglu, Halim .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2010, 59 (09) :4418-4424
[3]  
[Anonymous], 1995, Bernoulli, DOI DOI 10.2307/3318683
[4]  
Azais J.-M., 2009, Level Sets and Extrema of Random Processes and Fields, DOI DOI 10.1002/9780470434642
[5]   LOWER BOUNDS ON THE APPROXIMATION OF THE MULTIVARIATE EMPIRICAL PROCESS [J].
BECK, J .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (02) :289-306
[6]   Percolation of random nodal lines [J].
Beffara, Vincent ;
Gayet, Damien .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2017, 126 (01) :131-176
[7]  
Berthet P., 2006, IMS Lecture Notes-Monograph Series, V51, P155, DOI [10.1214/074921706000000824, DOI 10.1214/074921706000000824]
[8]   MEAN GEOMETRY FOR 2D RANDOM FIELDS: LEVEL PERIMETER AND LEVEL TOTAL CURVATURE INTEGRALS [J].
Bierme, Hermine ;
Desolneux, Agnes .
ANNALS OF APPLIED PROBABILITY, 2020, 30 (02) :561-607
[9]   CROSSINGS OF SMOOTH SHOT NOISE PROCESSES [J].
Bierme, Hermine ;
Desolneux, Agnes .
ANNALS OF APPLIED PROBABILITY, 2012, 22 (06) :2240-2281
[10]   A FOURIER APPROACH FOR THE LEVEL CROSSINGS OF SHOT NOISE PROCESSES WITH JUMPS [J].
Bierme, Hermine ;
Desolneux, Agnes .
JOURNAL OF APPLIED PROBABILITY, 2012, 49 (01) :100-113