Retinal artery/vein classification by multi-channel multi-scale fusion network

被引:4
|
作者
Yi, Junyan [1 ]
Chen, Chouyu [1 ]
Yang, Gang [2 ]
机构
[1] Beijing Univ Civil Engn & Architecture, Dept Comp Sci & Technol, Beijing, Peoples R China
[2] Renmin Univ China, Sch Informat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
A/V classification; Vessel segmentation; Multi-channel; Feature fusion; VESSEL SEGMENTATION; U-NET;
D O I
10.1007/s10489-023-04939-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The automatic artery/vein (A/V) classification in retinal fundus images plays a significant role in detecting vascular abnormalities and could speed up the diagnosis of various systemic diseases. Deep-learning methods have been extensively employed in this task. However, due to the lack of annotated data and the serious data imbalance, the performance of the existing methods is constricted. To address these limitations, we propose a novel multi-channel multi-scale fusion network (MMF-Net) that employs the enhancement of vessel structural information to constrain the A/V classification. First, the newly designed multi-channel (MM) module could extract the vessel structure from the original fundus image by the frequency filters, increasing the proportion of blood vessel pixels and reducing the influence caused by the background pixels. Second, the MMF-Net introduces a multi-scale transformation (MT) module, which could efficiently extract the information from the multi-channel feature representations. Third, the MMF-Net utilizes a multi-feature fusion (MF) module to improve the robustness of A/V classification by splitting and reorganizing the pixel feature from different scales. We validate our results on several public benchmark datasets. The experimental results show that the proposed method could achieve the best result compared with the existing state-of-the-art methods, which demonstrate the superior performance of the MMF-Net. The highly optimized Python implementations of our method is released at: https://github.com/chenchouyu/MMF_Net.
引用
收藏
页码:26400 / 26417
页数:18
相关论文
共 50 条
  • [1] Retinal artery/vein classification by multi-channel multi-scale fusion network
    Junyan Yi
    Chouyu Chen
    Gang Yang
    Applied Intelligence, 2023, 53 : 26400 - 26417
  • [2] A Multi-Channel and Multi-Scale Convolutional Neural Network for Hand Posture Recognition
    Feng, Jiawen
    Zhang, Limin
    Deng, Xiangyang
    Yu, Zhijun
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 785 - 785
  • [3] A Multi-Scale Attention Fusion Network for Retinal Vessel Segmentation
    Wang, Shubin
    Chen, Yuanyuan
    Yi, Zhang
    APPLIED SCIENCES-BASEL, 2024, 14 (07):
  • [4] Multi-channel and multi-scale mid-level image representation for scene classification
    Yang, Jinfu
    Yang, Fei
    Wang, Guanghui
    Li, Mingai
    JOURNAL OF ELECTRONIC IMAGING, 2017, 26 (02)
  • [5] Visual saliency detection based on multi-scale and multi-channel mean
    Sun, Lang
    Tang, Yan
    Zhang, Hong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 75 (01) : 667 - 684
  • [6] Visual saliency detection based on multi-scale and multi-channel mean
    Lang Sun
    Yan Tang
    Hong Zhang
    Multimedia Tools and Applications, 2016, 75 : 667 - 684
  • [7] Research on Multi-Channel Semantic Fusion Classification Model
    Yang, Di
    Qiu, Ningjia
    Cong, Lin
    Yang, Huamin
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2019, 23 (06) : 1044 - 1051
  • [8] Retinal Vessel Segmentation Method Based on Multi-Scale Attention Analytic Network
    Luo Wenjie
    Han Guoqing
    Tian Xuedong
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (20)
  • [9] Multi-channel computational ghost imaging based on multi-scale speckle optimization
    Wang, Hong
    Wang, Xiaoqian
    Gao, Chao
    Wang, Yu
    Yu, Zhuo
    Yao, Zhihai
    JOURNAL OF OPTICS, 2024, 26 (09)
  • [10] HiFuse: Hierarchical multi-scale feature fusion network for medical image classification
    Huo, Xiangzuo
    Sun, Gang
    Tian, Shengwei
    Wang, Yan
    Yu, Long
    Long, Jun
    Zhang, Wendong
    Li, Aolun
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 87