Existence and dynamics of normalized solutions to nonlinear Schrodinger equations with mixed fractional Laplacians

被引:8
作者
Chergui, Lassaad [1 ,2 ]
Gou, Tianxiang [3 ]
Hajaiej, Hichem [4 ]
机构
[1] Qassim Univ, Coll Sci & Arts Uglat Asugour, Dept Math, Buraydah, Saudi Arabia
[2] Carthage Univ, Coll Sci Bizerte, Dept Math, Tunis 7021, Tunisia
[3] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[4] Calif State Univ Los Angeles, Coll Nat Sci, Dept Math, 5151 State Dr, Los Angeles, CA 90032 USA
基金
中国国家自然科学基金;
关键词
CONCENTRATION-COMPACTNESS PRINCIPLE; ORBITAL STABILITY; GROUND-STATES; STANDING WAVES; SOLITARY WAVES; PRESCRIBED NORM; NLS; INEQUALITIES; CALCULUS; SYSTEM;
D O I
10.1007/s00526-023-02548-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the existence and dynamics of solutions to the equation with mixed fractional Laplacians (-Delta)(s1) u + (-Delta)(s2) u +lambda u = |u|(p-2) u Under the constraint integral(RN) |u|(2) dx = c > 0, where N >= 1,0 <s(2) < s(1) < 1,2 + 4s(1)/N <= p < infinity if N <= 2s(1) , 2 + 4s(1)/N <= p < p < 2N/N-2s(1) if N > 2s(1), lambda is an element of R appearing as Lagrange multiplier is unknown. The fractional Laplacian. The fractional Laplacian (-Delta)(s) is character characterized as F((-Delta)(s) u)(xi) = |xi|(2s) F(u) (xi) for xi is an element of R-N , where F denote the Fourier transform. First we establish the existence of ground state solutions and the multiplicity of bound state solutions. Then we study dynamics of solutions to the Cauchy problem for the associated time-dependent equation. Moreover, we establish orbital instability of ground state solutions.
引用
收藏
页数:45
相关论文
共 58 条
[1]  
Albert J, 2013, ADV DIFFERENTIAL EQU, V18, P1129
[2]  
Ambrosetti A, 2007, CAM ST AD M, V104, P1, DOI 10.1017/CBO9780511618260
[3]   Normalized solutions of mass supercritical Schrodinger equations with potential [J].
Bartsch, Thomas ;
Molle, Riccardo ;
Rizzi, Matteo ;
Verzini, Gianmaria .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2021, 46 (09) :1729-1756
[4]   Normalized solutions for a coupled Schrodinger system [J].
Bartsch, Thomas ;
Zhong, Xuexiu ;
Zou, Wenming .
MATHEMATISCHE ANNALEN, 2021, 380 (3-4) :1713-1740
[5]   Multiple normalized solutions for a competing system of Schrodinger equations [J].
Bartsch, Thomas ;
Soave, Nicola .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (01)
[6]   A natural constraint approach to normalized solutions of nonlinear Schrodinger equations and systems [J].
Bartsch, Thomas ;
Soave, Nicola .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (12) :4998-5037
[7]   Normalized solutions for a system of coupled cubic Schrodinger equations on R3 [J].
Bartsch, Thomas ;
Jeanjean, Louis ;
Soave, Nicola .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (04) :583-614
[8]   Normalized solutions of nonlinear Schrodinger equations [J].
Bartsch, Thomas ;
de Valeriola, Sebastien .
ARCHIV DER MATHEMATIK, 2013, 100 (01) :75-83
[9]   ON DIPOLAR QUANTUM GASES IN THE UNSTABLE REGIME [J].
Bellazzini, Jacopo ;
Jeanjean, Louis .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (03) :2028-2058
[10]   Existence and instability of standing waves with prescribed norm for a class of Schrodinger-Poisson equations [J].
Bellazzini, Jacopo ;
Jeanjean, Louis ;
Luo, Tingjian .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 :303-339