In-memory photonic dot-product engine with electrically programmable weight banks

被引:98
作者
Zhou, Wen [1 ]
Dong, Bowei [1 ]
Farmakidis, Nikolaos [1 ]
Li, Xuan [1 ]
Youngblood, Nathan [1 ,5 ]
Huang, Kairan [1 ]
He, Yuhan [1 ]
David Wright, C. [2 ]
Pernice, Wolfram H. P. [3 ,4 ]
Bhaskaran, Harish [1 ]
机构
[1] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
[2] Univ Exeter, Dept Engn, Exeter EX4 4QF, England
[3] Univ Munster, Inst Phys, Heisenbergstr 11, D-48149 Munster, Germany
[4] Heidelberg Univ, Kirchhoff Inst Phys, Neuenheimer Feld 227, D-69120 Heidelberg, Germany
[5] Univ Pittsburgh, Dept Elect & Comp Engn, Pittsburgh, PA 15261 USA
基金
欧盟地平线“2020”;
关键词
PHASE-CHANGE MATERIALS; SILICON; NETWORKS;
D O I
10.1038/s41467-023-38473-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electronically reprogrammable photonic circuits based on phase-change chalcogenides present an avenue to resolve the von-Neumann bottleneck; however, implementation of such hybrid photonic-electronic processing has not achieved computational success. Here, we achieve this milestone by demonstrating an in-memory photonic-electronic dot-product engine, one that decouples electronic programming of phase-change materials (PCMs) and photonic computation. Specifically, we develop non-volatile electronically reprogrammable PCM memory cells with a record-high 4-bit weight encoding, the lowest energy consumption per unit modulation depth (1.7 nJ/dB) for Erase operation (crystallization), and a high switching contrast (158.5%) using non-resonant silicon-on-insulator waveguide microheater devices. This enables us to perform parallel multiplications for image processing with a superior contrast-to-noise ratio (>= 87.36) that leads to an enhanced computing accuracy (standard deviation sigma <= 0.007). An in-memory hybrid computing system is developed in hardware for convolutional processing for recognizing images from the MNIST database with inferencing accuracies of 86% and 87%. Hybrid photonic-electronic systems are essential for high-throughput neuromorphic computing. Here, the authors report an in-memory photonic-electronic dot-product engine with decoupled electronic programming of the phase-change memory cells and parallel photonic computation with high-bit operation, low energy consumption, and high accuracy.
引用
收藏
页数:10
相关论文
共 51 条
[1]   An on-chip photonic deep neural network for image classification [J].
Ashtiani, Farshid ;
Geers, Alexander J. ;
Aflatouni, Firooz .
NATURE, 2022, 606 (7914) :501-+
[2]   Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip [J].
Atabaki, Amir H. ;
Moazeni, Sajjad ;
Pavanello, Fabio ;
Gevorgyan, Hayk ;
Notaros, Jelena ;
Alloatti, Luca ;
Wade, Mark T. ;
Sun, Chen ;
Kruger, Seth A. ;
Meng, Huaiyu ;
Al Qubaisi, Kenaish ;
Wang, Imbert ;
Zhang, Bohan ;
Khilo, Anatol ;
Baiocco, Christopher V. ;
Popovic, Milos A. ;
Stojanovic, Vladimir M. ;
Ram, Rajeev J. .
NATURE, 2018, 556 (7701) :349-+
[3]   Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations [J].
Benjamin, Ben Varkey ;
Gao, Peiran ;
McQuinn, Emmett ;
Choudhary, Swadesh ;
Chandrasekaran, Anand R. ;
Bussat, Jean-Marie ;
Alvarez-Icaza, Rodrigo ;
Arthur, John V. ;
Merolla, Paul A. ;
Boahen, Kwabena .
PROCEEDINGS OF THE IEEE, 2014, 102 (05) :699-716
[4]   Programmable photonic circuits [J].
Bogaerts, Wim ;
Perez, Daniel ;
Capmany, Jose ;
Miller, David A. B. ;
Poon, Joyce ;
Englund, Dirk ;
Morichetti, Francesco ;
Melloni, Andrea .
NATURE, 2020, 586 (7828) :207-216
[5]   Broadband Nonvolatile Electrically Controlled Programmable Units in Silicon Photonics [J].
Chen, Rui ;
Fang, Zhuoran ;
Froch, Johannes E. ;
Xu, Peipeng ;
Zheng, Jiajiu ;
Majumdar, Arka .
ACS PHOTONICS, 2022, 9 (06) :2142-2150
[6]   NVIDIA A100 Tensor Core GPU: Performance and Innovation [J].
Choquette, Jack ;
Gandhi, Wishwesh ;
Giroux, Olivier ;
Stam, Nick ;
Krashinsky, Ronny .
IEEE MICRO, 2021, 41 (02) :29-35
[7]   Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters [J].
Fang, Zhuoran ;
Chen, Rui ;
Zheng, Jiajiu ;
Khan, Asir Intisar ;
Neilson, Kathryn M. ;
Geiger, Sarah J. ;
Callahan, Dennis M. ;
Moebius, Michael G. ;
Saxena, Abhi ;
Chen, Michelle E. ;
Rios, Carlos ;
Hu, Juejun ;
Pop, Eric ;
Majumdar, Arka .
NATURE NANOTECHNOLOGY, 2022, 17 (08) :842-+
[8]   Non-Volatile Reconfigurable Integrated Photonics Enabled by Broadband Low-Loss Phase Change Material [J].
Fang, Zhuoran ;
Zheng, Jiajiu ;
Saxena, Abhi ;
Whitehead, James ;
Chen, Yueyang ;
Majumdar, Arka .
ADVANCED OPTICAL MATERIALS, 2021, 9 (09)
[9]   Electronically Reconfigurable Photonic Switches Incorporating Plasmonic Structures and Phase Change Materials [J].
Farmakidis, Nikolaos ;
Youngblood, Nathan ;
Lee, June Sang ;
Feldmann, Johannes ;
Lodi, Alessandro ;
Li, Xuan ;
Aggarwal, Samarth ;
Zhou, Wen ;
Bogani, Lapo ;
Pernice, Wolfram Hp ;
Wright, C. David ;
Bhaskaran, Harish .
ADVANCED SCIENCE, 2022, 9 (20)
[10]   Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality [J].
Farmakidis, Nikolaos ;
Youngblood, Nathan ;
Li, Xuan ;
Tan, James ;
Swett, Jacob L. ;
Cheng, Zengguang ;
Wright, C. David ;
Pernice, Wolfram H. P. ;
Bhaskaran, Harish .
SCIENCE ADVANCES, 2019, 5 (11)