Analyticity of the Lyapunov exponents of random products of quasi-periodic cocycles

被引:0
作者
Bezerra, Jamerson [3 ]
Sanchez, Adriana [1 ]
Tall, El Hadji Yaya [2 ]
机构
[1] Univ Costa Rica, Ctr Invest Matemat Pura & Aplicada Escuela Matemat, San Jose, Costa Rica
[2] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
[3] Nicolaus Copernicus Univ, Fac Math & Comp Sci, Ul Chopina 12-18, PL-87100 Torun, Poland
基金
巴西圣保罗研究基金会;
关键词
skew product; quasi-periodic cocycles; random product; Lyapunov exponents; CONTINUITY;
D O I
10.1088/1361-6544/acd299
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the top Lyapunov exponent ?(+)(p) , p = (p(1), . . . ,p(N)) with p(i) > 0 for each i, associated with a random product of quasi-periodic cocycles depends real analytically on the transition probabilities p whenever ?(+)(p) is simple. Moreover if the spectrum at p is simple (all Lyapunov exponents having multiplicity one ) then all Lyapunov exponents depend real analytically on p.
引用
收藏
页码:3467 / 3482
页数:16
相关论文
共 27 条
[21]  
Kifer Y., 1986, ERGODIC THEORY RANDO, DOI [10.1007/978-1-4684-9175-3, DOI 10.1007/978-1-4684-9175-3]
[22]  
LEPAGE E, 1989, ANN I H POINCARE-PR, V25, P109
[23]   Lyapunov exponents of linear cocycles over Markov shifts [J].
Malheiro, Elais C. ;
Viana, Marcelo .
STOCHASTICS AND DYNAMICS, 2015, 15 (03)
[24]  
PERES Y, 1991, LECT NOTES MATH, V1486, P64
[25]   Simple Lyapunov spectrum for certain linear cocycles over partially hyperbolic maps [J].
Poletti, Mauricio ;
Viana, Marcelo .
NONLINEARITY, 2019, 32 (01) :238-284
[26]  
Sanchez A, 2020, Arxiv, DOI arXiv:1810.03061
[27]   MODULI OF CONTINUITY FOR THE LYAPUNOV EXPONENTS OF RANDOM GL(2)-COCYCLES [J].
Tall, El Hadji Yaya ;
Viana, Marcelo .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (02) :1343-1383