Analyticity of the Lyapunov exponents of random products of quasi-periodic cocycles

被引:0
作者
Bezerra, Jamerson [3 ]
Sanchez, Adriana [1 ]
Tall, El Hadji Yaya [2 ]
机构
[1] Univ Costa Rica, Ctr Invest Matemat Pura & Aplicada Escuela Matemat, San Jose, Costa Rica
[2] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
[3] Nicolaus Copernicus Univ, Fac Math & Comp Sci, Ul Chopina 12-18, PL-87100 Torun, Poland
基金
巴西圣保罗研究基金会;
关键词
skew product; quasi-periodic cocycles; random product; Lyapunov exponents; CONTINUITY;
D O I
10.1088/1361-6544/acd299
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the top Lyapunov exponent ?(+)(p) , p = (p(1), . . . ,p(N)) with p(i) > 0 for each i, associated with a random product of quasi-periodic cocycles depends real analytically on the transition probabilities p whenever ?(+)(p) is simple. Moreover if the spectrum at p is simple (all Lyapunov exponents having multiplicity one ) then all Lyapunov exponents depend real analytically on p.
引用
收藏
页码:3467 / 3482
页数:16
相关论文
共 27 条
[11]   Mixed Random-Quasiperiodic Cocycles [J].
Cai, Ao ;
Duarte, Pedro ;
Klein, Silvius .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2022, 53 (04) :1469-1497
[12]  
Damanik D, 2007, P SYMP PURE MATH, V76, P539
[13]   Schrodinger operators with dynamically defined potentials [J].
Damanik, David .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2017, 37 :1681-1764
[14]  
Duarte P., 2016, Atlantis Studies in Dynamical Systems, V3, DOI DOI 10.2991/978-94-6239-124-6
[15]   Continuity, positivity and simplicity of the Lyapunov exponents for quasi-periodic cocycles [J].
Duarte, Pedro ;
Klein, Silvius .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2019, 21 (07) :2051-2106
[16]   A RANDOM COCYCLE WITH NON HOLDER LYAPUNOV EXPONENT [J].
Duarte, Pedro ;
Klein, Silvius ;
Santos, Manuel .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (08) :4841-4861
[17]   RANDOM MATRIX PRODUCTS AND MEASURES ON PROJECTIVE SPACES [J].
FURSTENBERG, H ;
KIFER, Y .
ISRAEL JOURNAL OF MATHEMATICS, 1983, 46 (1-2) :12-32
[18]   PRODUCTS OF RANDOM MATRICES [J].
FURSTENBERG, H ;
KESTEN, H .
ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (02) :457-469
[19]  
Furstenberg H., 1963, Trans. Amer. Math. Soc., V108, P377, DOI [10.1090/S0002-9947-1963-0163345-0, DOI 10.1090/S0002-9947-1963-0163345-0]
[20]   LARGE NUMBER LAW AND PERTURBATIONS FOR REDUCIBLE PRODUCTS OF INDEPENDENT ALEATORY MATRICES [J].
HENNION, H .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1984, 67 (03) :265-278