F-Doped Co-N-C Catalysts for Enhancing the Oxygen Reduction Reaction in Zn-Air Batteries

被引:7
|
作者
Xu, Chao [1 ]
Guo, Peng-Peng [1 ]
Yang, Kun-Zu [1 ]
Lu, Chen [1 ]
Wei, Ping-Jie [1 ]
Liu, Jin-Gang [1 ]
机构
[1] East China Univ Sci & Technol, Sch Chem & Mol Engn, Key Lab Adv Mat, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
electrocatalyst; F-doping; metal macrocycles; oxygen reduction reaction; Zn-air battery; POROUS CARBON; EFFICIENT; ELECTROCATALYSTS;
D O I
10.1002/cctc.202300404
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Zn-air battery is a promising next-generation energy storage device. Its performance, however, is limited by a high overpotential resulted from the slow kinetics of the cathodic oxygen reduction reaction (ORR). This study reports a simple strategy for preparation of a fluorine-doped Co-N-C composite as highly efficient electrocatalyst for ORR. The C@PVI-(TPFC)Co-800 catalyst was prepared by pyrolysis of F-containing Co-corrole that was assembled on PVI-functionalized carbon black through the axial imidazole coordination (PVI=polyvinylimidazole, TPFC=5,10,15-triperfluorophenyl-21H, 22H-corrole). The C@PVI-(TPFC)Co-800 catalyst exhibited much more positive ORR half-wave potential (E-1/2=0.88 V vs. RHE) than its counterpart C@PVI-(TPC)Co-800 (E-1/2=0.82 V, TPC=5,10,15-triphenyl-21H, 22H-corrole) without F-doping in 0.1 M KOH electrolyte. C@PVI-(TPFC)Co-800 also achieved a greater kinetic current density and enhanced durability in alkaline media. In addition, a Zn-air battery with C@PVI-(TPFC)Co-800 loaded at the cathode delivered much higher peak power density (P-max=141 mW/cm(2)) and open-circuit voltage (OCV=1.45 V) over the C@PVI-(TPC)Co-800 counterpart (P-max=110 mW/cm(2), OCV=1.39 V) and the commercial 20 % Pt/C (P-max=119 mW/cm(2), OCV=1.42 V) as well. The promoted catalyst performance for ORR was attributed to the increased specific surface area, more defects generated, and reduced electron density distribution around the Co metal center after F-doping.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Highly efficient and active Co-N-C catalysts for oxygen reduction and Zn-air batteries
    Lei, Cong
    Yang, Rongzhong
    Zhao, Jianan
    Tang, Wenbin
    Miao, Fadong
    Huang, Qinghong
    Wu, Yuping
    FRONTIERS IN ENERGY, 2024, 18 (04) : 436 - 446
  • [2] Nanofibrillated Cellulose-Derived Nanofibrous Co@N-C as Oxygen Reduction Reaction Catalysts in Zn-Air Batteries
    Shen, Mengxia
    Liu, Jun
    Duan, Chao
    Xiong, Chuanyin
    Ding, Shujiang
    Tong, Shuhua
    Ni, Yonghao
    ACS APPLIED NANO MATERIALS, 2022, 5 (05) : 6438 - 6446
  • [3] Poly-active centric Co3O4-CeO2/Co-N-C composites as superior oxygen reduction catalysts for Zn-air batteries
    Li, Guanzhou
    Mu, Yangchang
    Huang, Zongxiong
    Wang, Naiguang
    Chen, Yuanye
    Liu, Jun
    Liu, Guoping
    Li, Oi Lun
    Shao, Minhua
    Shi, Zhicong
    SCIENCE CHINA-MATERIALS, 2021, 64 (01) : 73 - 84
  • [4] Construction of high-loading 3D Co-N-C catalyst for oxygen reduction reaction in Zn-air batteries
    Li, Huaiyu
    Xu, Chenxi
    Wang, Wei
    Li, Gangyong
    Huang, Junlin
    Chen, Liang
    Hou, Zhaohui
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 935
  • [5] Fe, N dual doped graphitic carbon derived from straw as efficient electrochemical catalysts for oxygen reduction reaction and Zn-air batteries
    Li, Jianpeng
    Li, Xianfeng
    Chen, Hongyan
    Xiao, Dingshu
    Li, Jiajia
    Xu, Dekang
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 865
  • [6] Oxygen Electrocatalysis with Mesoporous Co-N-C Catalysts: Towards Understanding the Active Site and Development of Rechargeable Zn-Air Batteries
    Samanta, Arpan
    Raj, C. Retna
    CHEMELECTROCHEM, 2020, 7 (13): : 2877 - 2887
  • [7] Enhanced oxygen reduction and evolution in N-doped carbon anchored with Co nanoparticles for rechargeable Zn-air batteries
    Zhang, Dan
    Sun, Panpan
    Zhou, Qin
    Li, Bin
    Wei, Yongan
    Gong, Tao
    Huang, Niu
    Lv, Xiaowei
    Fang, Liang
    Sun, Xiaohua
    APPLIED SURFACE SCIENCE, 2021, 542
  • [8] Mn-Doped Co-N-C Dodecahedron as a Bifunctional Electrocatalyst for Highly Efficient Zn-Air Batteries
    Wei, Licheng
    Qiu, Lijun
    Liu, Yiyi
    Zhang, Jinming
    Yuan, Dingsheng
    Wang, Lei
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (16): : 14180 - +
  • [9] Self-Catalyzed Growth of Co-N-C Nanobrushes for Efficient Rechargeable Zn-Air Batteries
    Luo, Hao
    Jiang, Wen-Jie
    Niu, Shuai
    Zhang, Xing
    Zhang, Yun
    Yuan, Lu-Pan
    He, Chuanxin
    Hu, Jin-Song
    SMALL, 2020, 16 (20)
  • [10] Preparation of Fe, N co-doped oxygen reduction catalysts from sacrificial templates and their application to Zn-air batteries
    Wu, Shang
    Liu, Chaoyang
    Tian, Shuo
    Sun, Xin
    Wang, Jiajia
    Zhao, Huanlei
    Wang, Yanbin
    Su, Qiong
    Sun, Yuzhi
    Li, Zhenhua
    Yang, Quanlu
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 681