Necessary and sufficient conditions for boundedness of commutators of maximal function on the p-adic vector spaces

被引:7
作者
He, Qianjun [1 ]
Li, Xiang [2 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
[2] Shandong Jianzhu Univ, Sch Sci, Jinan 250000, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 06期
基金
中国国家自然科学基金;
关键词
p-adic vector space; maximal function; commutator; BMO space; Morrey spaces; MORREY SPACES; DIRICHLET PROBLEM; OPERATORS; BMO; EQUATIONS; AVERAGES;
D O I
10.3934/math.2023719
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first show that the p-adic version of maximal function MpL log L is equivalent to the maximal function Mp(Mp) and that the class of functions for which the maximal commutators and the commutator with the p-adic version of maximal function or the maximal sharp function are bounded on the p-adic vector spaces are characterized and proved to be the same. Moreover, new pointwise estimates for these operators are proved.
引用
收藏
页码:14064 / 14085
页数:22
相关论文
共 45 条
[31]  
Rao M. M., 1991, THEORY ORLICZ SPACES
[32]   Estimates of weighted Hardy-Littlewood averages on the p-adic vector space [J].
Rim, Kyung Soo ;
Lee, Jaesung .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (02) :1470-1477
[33]   The Lp Dirichlet problem and nondivergence harmonic measure [J].
Rios, C .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (02) :665-687
[34]   A van der Corput lemma for the p-adic numbers [J].
Rogers, KM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (12) :3525-3534
[35]   Maximal averages along curves over the p-adic numbers [J].
Rogers, KM .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 70 (03) :357-375
[36]   HIGHER-ORDER COMMUTATORS FOR VECTOR-VALUED CALDERON-ZYGMUND OPERATORS [J].
SEGOVIA, C ;
TORREA, JL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 336 (02) :537-556
[37]  
Segovia C., 1991, PUBL MAT, V35, P209
[38]   Boundary value problems in Morrey spaces for elliptic systems on Lipschitz domains [J].
Shen, ZW .
AMERICAN JOURNAL OF MATHEMATICS, 2003, 125 (05) :1079-1115
[39]   NOTE ON CLASS LLOGL [J].
STEIN, EM .
STUDIA MATHEMATICA, 1969, 32 (03) :305-&
[40]  
Vladimirov VS., 1994, P ADIC ANAL MATH PHY, DOI DOI 10.1142/1581