Activation Function Dependence of Data-Driven Spectra Prediction of Nanostructures

被引:1
作者
Qiu, Weiyang [1 ]
He, Cheng [1 ]
Zheng, Genrang [1 ]
Yi, Qiaoling [1 ]
Chen, Guo [1 ]
机构
[1] Zhongshan Polytech, Sch Informat Engn, Boai Rd 7, Zhongshan 528400, Peoples R China
关键词
activation function; data-driven; deep learning; metamaterials; nanophotonics; INVERSE DESIGN; GENERATION;
D O I
10.1002/adts.202200867
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accompanied by the fast growth of data and computing power, Deep Learning has developed at a tremendous speed. Other related areas including material science, physics, chemistry, medical science, and engineering also benefit from this well-proven powerful tool. Activation function is an essential part of Deep Neural Networks, which has attracted a lot of attention, but there are few researches based on nanophotonics problems. In this work, comprehensive research is made on the effectiveness of several widely used activation functions. This research shows that among those fancy activation functions that are investigated, Tanhshrink performs the best, which can predict the spectra with a Root Mean Square Error <0.005 for over 99% of these randomly generated instances. Other traditional activation functions like Tanh and Sigmoid also show excellent outcomes in competition with novel ones. This work shows that although deep learning has already been a powerful tool to solve physics problems, there is still a lot of fundamental work to be done to achieve its maximum potential.
引用
收藏
页数:12
相关论文
共 54 条
[1]  
Abbott L. F., 2001, Theoretical neuroscience: Computationl and mathematical modeling of neural systems
[2]  
[Anonymous], SWISH CITING INFORM
[3]  
[Anonymous], 2017, Advances in neural information processing systems
[4]  
Bochkovskiy A., 2020, ARXIV
[5]   Isospin Properties of Nuclear Pair Correlations from the Level Structure of the Self-Conjugate Nucleus 88Ru [J].
Cederwall, B. ;
Liu, X. ;
Aktas, O. ;
Ertoprak, A. ;
Zhang, W. ;
Qi, C. ;
Clement, E. ;
de France, G. ;
Ralet, D. ;
Gadea, A. ;
Goasduff, A. ;
Jaworski, G. ;
Kuti, I. ;
Nyako, B. M. ;
Nyberg, J. ;
Palacz, M. ;
Wadsworth, R. ;
Valiente-Dobon, J. J. ;
Al-Azri, H. ;
Nyberg, A. Atac ;
Back, T. ;
de Angelis, G. ;
Doncel, M. ;
Dudouet, J. ;
Gottardo, A. ;
Jurado, M. ;
Ljungvall, J. ;
Mengoni, D. ;
Napoli, D. R. ;
Petrache, C. M. ;
Sohler, D. ;
Timar, J. ;
Barrientos, D. ;
Bednarczyk, P. ;
Benzoni, G. ;
Birkenbach, B. ;
Boston, A. J. ;
Boston, H. C. ;
Burrows, I. ;
Charles, L. ;
Ciemala, M. ;
Crespi, F. C. L. ;
Cullen, D. M. ;
Desesquelles, P. ;
Domingo-Pardo, C. ;
Eberth, J. ;
Erduran, N. ;
Erturk, S. ;
Gonzalez, V. ;
Goupil, J. .
PHYSICAL REVIEW LETTERS, 2020, 124 (06)
[6]  
Clevert D.-A., 2016, FAST ACCURATE DEEP N
[7]  
Courbariaux M, 2015, ADV NEUR IN, V28
[8]   Accurate inverse design of Fabry-Perot-cavity-based color filters far beyond sRGB via a bidirectional artificial neural network [J].
Dai, Peng ;
Wang, Yasi ;
Hu, Yueqiang ;
de Groot, C. H. ;
Muskens, Otto ;
Duan, Huigao ;
Huang, Ruomeng .
PHOTONICS RESEARCH, 2021, 9 (05) :B236-B246
[9]   Deep Learning the Functional Renormalization Group [J].
Di Sante, Domenico ;
Medvidovi, Matija ;
Toschi, Alessandro ;
Sangiovanni, Giorgio ;
Franchini, Cesare ;
Sengupta, Anirvan M. ;
Millis, Andrew J. .
PHYSICAL REVIEW LETTERS, 2022, 129 (13)
[10]  
Diganta M., 2020, BRIT MACH VIS VIRT C