Skin Cancer Classification Using Deep Spiking Neural Network

被引:35
|
作者
Gilani, Syed Qasim [1 ]
Syed, Tehreem [2 ]
Umair, Muhammad [3 ]
Marques, Oge [1 ]
机构
[1] Florida Atlantic Univ, Dept Elect Engn & Comp Sci, Boca Raton, FL 33431 USA
[2] Tech Univ Dresden, Dept Elect Engn & Comp Engn, D-01069 Dresden, Saxony, Germany
[3] George Mason Univ, Dept Elect & Comp Engn, Fairfax, VA 22030 USA
基金
美国国家科学基金会;
关键词
Deep learning; Image analysis; Spiking neural networks; Skin lesion classification; PREVALENCE; DIAGNOSIS; LESIONS; US;
D O I
10.1007/s10278-023-00776-2
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Skin cancer is one of the primary causes of death globally, and experts diagnose it by visual inspection, which can be inaccurate. The need for developing a computer-aided method to aid dermatologists in diagnosing skin cancer is highlighted by the fact that early identification can lower the number of deaths caused by skin malignancies. Among computer-aided techniques, deep learning is the most popular for identifying cancer from skin lesion images. Due to their power-efficient behavior, spiking neural networks are attractive deep neural networks for hardware implementation. We employed deep spiking neural networks using the surrogate gradient descent method to classify 3670 melanoma and 3323 non-melanoma images from the ISIC 2019 dataset. We achieved an accuracy of 89.57% and an F1 score of 90.07% using the proposed spiking VGG-13 model, which is higher than the VGG-13 and AlexNet using less trainable parameters.
引用
收藏
页码:1137 / 1147
页数:11
相关论文
共 50 条
  • [1] Skin Cancer Classification Using Deep Spiking Neural Network
    Syed Qasim Gilani
    Tehreem Syed
    Muhammad Umair
    Oge Marques
    Journal of Digital Imaging, 2023, 36 : 1137 - 1147
  • [2] The skin cancer classification using deep convolutional neural network
    Dorj, Ulzii-Orshikh
    Lee, Keun-Kwang
    Choi, Jae-Young
    Lee, Malrey
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (08) : 9909 - 9924
  • [3] The skin cancer classification using deep convolutional neural network
    Ulzii-Orshikh Dorj
    Keun-Kwang Lee
    Jae-Young Choi
    Malrey Lee
    Multimedia Tools and Applications, 2018, 77 : 9909 - 9924
  • [4] Deep Convolutional Neural Network (DCNN) for Skin Cancer Classification
    Aburaed, Nour
    Panthakkan, Alavikunhu
    Al-Saad, Mina
    Amin, Saad Ali
    Mansoor, Wathiq
    2020 27TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (ICECS), 2020,
  • [5] Classification of Alzheimer’s Disease Using Deep Convolutional Spiking Neural Network
    Regina Esi Turkson
    Hong Qu
    Cobbinah Bernard Mawuli
    Moses J. Eghan
    Neural Processing Letters, 2021, 53 : 2649 - 2663
  • [6] Classification of Alzheimer's Disease Using Deep Convolutional Spiking Neural Network
    Turkson, Regina Esi
    Qu, Hong
    Mawuli, Cobbinah Bernard
    Eghan, Moses J.
    NEURAL PROCESSING LETTERS, 2021, 53 (04) : 2649 - 2663
  • [7] A Refined Approach for Classification and Detection of Melanoma Skin Cancer using Deep Neural Network
    Babar, Manahil
    Butt, Roha Tariq
    Batool, Hira
    Asghar, Muhammad Adeel
    Majeed, Abdul Raffay
    Khan, Muhammad Jamil
    2021 INTERNATIONAL CONFERENCE ON DIGITAL FUTURES AND TRANSFORMATIVE TECHNOLOGIES (ICODT2), 2021,
  • [8] Classification of skin cancer from dermoscopic images using deep neural network architectures
    Jaisakthi, S. M.
    Mirunalini, P.
    Aravindan, Chandrabose
    Appavu, Rajagopal
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (10) : 15763 - 15778
  • [9] Classification of skin cancer from dermoscopic images using deep neural network architectures
    Jaisakthi S M
    Mirunalini P
    Chandrabose Aravindan
    Rajagopal Appavu
    Multimedia Tools and Applications, 2023, 82 : 15763 - 15778
  • [10] Deep Spiking Quantum Neural Network for Noisy Image Classification
    Konar, Debanjan
    Das Sarma, Aditya
    Bhandary, Soham
    Bhattacharyya, Siddhratha
    Cangi, Attila
    Aggarwal, Vaneet
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,