Canonical Fourier-Bessel transform and their applications

被引:8
|
作者
Ghazouani, Sami [1 ]
Sahbani, Jihed [2 ]
机构
[1] Univ Carthage, Fac Sci Bizerte, Dynam Syst & Their Applicat, UR17ES21, Bizerte 7021, Tunisia
[2] Univ Carthage, Fac Sci Bizerte, Bizerte 7021, Tunisia
关键词
Fourier-Bessel transform; Linear canonical transform; Canonical Fourier-Bessel transform; Translation operator; Convolution product; Heat equation; Heat kernel; FRACTIONAL POWER;
D O I
10.1007/s11868-022-00500-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to introduce a translation operator associated to the canonical Fourier-Bessel transform F nu m and study some of its important properties. We derive a convolution product for this transform and as application we study the heat equation related to delta(m-1)(nu) given by delta(m-1)(nu) = d(2)/dx(2) + (2v +1/x + 2ia/bx)d/dx - (a(2)/b(2)x(2) - 2i (nu + 1)a/b).
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Laguerre expansion on the Heisenberg group and Fourier-Bessel transform on ℂn
    Der-Chen Chang
    Peter Griener
    Jingzhi Tie
    Science in China Series A: Mathematics, 2006, 49 : 1722 - 1739
  • [22] An Analog of Titchmarsh's Theorem for the Generalized Fourier-Bessel Transform
    Daher, R.
    El Hamma, M.
    El Ouadih, S.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2016, 37 (02) : 114 - 119
  • [23] NUMERICAL INVERSION OF THE LAPLACE TRANSFORM BASED ON THE FOURIER-BESSEL EXPANSION
    SELEZOV, IT
    KORSUNSKII, SV
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1988, (11): : 24 - 30
  • [24] Full Fourier-Bessel transform and the algebra of singular pseudodifferential operators
    Katrakhov, V. V.
    Lyakhov, L. N.
    DIFFERENTIAL EQUATIONS, 2011, 47 (05) : 681 - 695
  • [25] Relating multipliers and transplantation for Fourier-Bessel expansions and Hankel transform
    Betancor, JJ
    Stempak, K
    TOHOKU MATHEMATICAL JOURNAL, 2001, 53 (01) : 109 - 129
  • [26] Full Fourier-Bessel transform and the algebra of singular pseudodifferential operators
    V. V. Katrakhov
    L. N. Lyakhov
    Differential Equations, 2011, 47 : 681 - 695
  • [27] Laguerre expansion on the Heisenberg group and Fourier-Bessel transform on Cn
    Chang Der-Chen
    Griener Peter
    Tie Jingzhi
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (11): : 1722 - 1739
  • [28] On Recovery of the Singular Differential Laplace-Bessel Operator from the Fourier-Bessel Transform
    Sitnik, Sergey M.
    Fedorov, Vladimir E.
    Polovinkina, Marina V.
    Polovinkin, Igor P.
    MATHEMATICS, 2023, 11 (05)
  • [29] On Fourier, Fourier-Bessel and Radon transformations
    Kipriyanov, IA
    Lyakhov, LN
    DOKLADY AKADEMII NAUK, 1998, 360 (02) : 157 - 160
  • [30] On estimates for the Fourier-Bessel integral transform in the space L2(ℝ+)
    V. A. Abilov
    F. V. Abilova
    M. K. Kerimov
    Computational Mathematics and Mathematical Physics, 2009, 49 : 1103 - 1110