Photonic multiplexing techniques for neuromorphic computing

被引:54
作者
Bai, Yunping [1 ]
Xu, Xingyuan [1 ]
Tan, Mengxi [3 ]
Sun, Yang [2 ]
Li, Yang [2 ]
Wu, Jiayang [2 ]
Morandotti, Roberto [4 ]
Mitchell, Arnan [3 ]
Xu, Kun [1 ]
Moss, David J. [2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Swinburne Univ Technol, Opt Sci Ctr, Hawthorn, Vic 3122, Australia
[3] RMIT Univ, Fac Engn, Melbourne, Vic 3001, Australia
[4] INRS Energie Mat & Telecommun, 1650 Blvd Lionel Boulet, Varennes, PQ J3X 1S2, Canada
基金
中国国家自然科学基金;
关键词
integrated optics; optical computing operation; optical neural network; photonic multiplexing; OPTICAL NEURAL-NETWORK; EXPERIMENTAL REALIZATION; PERFORMANCE; DESIGN; DYNAMICS; IMPLEMENTATION; PARALLEL; LESS; RF;
D O I
10.1515/nanoph-2022-0485
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The simultaneous advances in artificial neural networks and photonic integration technologies have spurred extensive research in optical computing and optical neural networks (ONNs). The potential to simultaneously exploit multiple physical dimensions of time, wavelength and space give ONNs the ability to achieve computing operations with high parallelism and large-data throughput. Different photonic multiplexing techniques based on these multiple degrees of freedom have enabled ONNs with large-scale interconnectivity and linear computing functions. Here, we review the recent advances of ONNs based on different approaches to photonic multiplexing, and present our outlook on key technologies needed to further advance these photonic multiplexing/hybrid-multiplexing techniques of ONNs.
引用
收藏
页码:795 / 817
页数:23
相关论文
共 212 条
[91]   Real-time computing without stable states:: A new framework for neural computation based on perturbations [J].
Maass, W ;
Natschläger, T ;
Markram, H .
NEURAL COMPUTATION, 2002, 14 (11) :2531-2560
[92]   Networks of spiking neurons: The third generation of neural network models [J].
Maass, W .
NEURAL NETWORKS, 1997, 10 (09) :1659-1671
[93]   Next-Generation Optical Fronthaul Systems Using Multicore Fiber Media [J].
Macho, Andres ;
Morant, Maria ;
Llorente, Roberto .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2016, 34 (20) :4819-4827
[94]   A photonic complex perceptron for ultrafast data processing [J].
Mancinelli, Mattia ;
Bazzanella, Davide ;
Bettotti, Paolo ;
Pavesi, Lorenzo .
SCIENTIFIC REPORTS, 2022, 12 (01)
[95]   110 GHz CMOS compatible thin film LiNbO3 modulator on silicon [J].
Mercante, Andrew J. ;
Yao, Peng ;
Shi, Shouyuan ;
Schneider, Garrett ;
Murakowski, Janusz ;
Prather, Dennis W. .
OPTICS EXPRESS, 2016, 24 (14) :15590-15595
[96]   Artificial Neuron Based on Integrated Semiconductor Quantum Dot Mode-Locked Lasers [J].
Mesaritakis, Charis ;
Kapsalis, Alexandros ;
Bogris, Adonis ;
Syvridis, Dimitris .
SCIENTIFIC REPORTS, 2016, 6
[97]   Deep learning in light-matter interactions [J].
Midtvedt, Daniel ;
Mylnikov, Vasilii ;
Stilgoe, Alexander ;
Kall, Mikael ;
Rubinsztein-Dunlop, Halina ;
Volpe, Giovanni .
NANOPHOTONICS, 2022, 11 (14) :3189-3214
[98]   Attojoule Optoelectronics for Low-Energy Information Processing and Communications [J].
Miller, David A. B. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2017, 35 (03) :346-396
[99]   Human-level control through deep reinforcement learning [J].
Mnih, Volodymyr ;
Kavukcuoglu, Koray ;
Silver, David ;
Rusu, Andrei A. ;
Veness, Joel ;
Bellemare, Marc G. ;
Graves, Alex ;
Riedmiller, Martin ;
Fidjeland, Andreas K. ;
Ostrovski, Georg ;
Petersen, Stig ;
Beattie, Charles ;
Sadik, Amir ;
Antonoglou, Ioannis ;
King, Helen ;
Kumaran, Dharshan ;
Wierstra, Daan ;
Legg, Shane ;
Hassabis, Demis .
NATURE, 2015, 518 (7540) :529-533
[100]   Neuromorphic Silicon Photonics and Hardware-Aware Deep Learning for High-Speed Inference [J].
Moralis-Pegios, Miltiadis ;
Mourgias-Alexandris, George ;
Tsakyridis, Apostolos ;
Giamougiannis, George ;
Totovic, Angelina ;
Dabos, George ;
Passalis, Nikolaos ;
Kirtas, Manos ;
Rutirawut, T. ;
Gardes, F. Y. ;
Tefas, Anastasios ;
Pleros, Nikos .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (10) :3243-3254