Dementia detection from brain activity during sleep

被引:9
作者
Ye, Elissa M. [1 ,2 ]
Sun, Haoqi [1 ,2 ]
Krishnamurthy, Parimala, V [1 ,2 ]
Adra, Noor [1 ,2 ]
Ganglberger, Wolfgang [1 ,2 ]
Thomas, Robert J. [3 ]
Lam, Alice D. [1 ]
Westover, M. Brandon [1 ,2 ]
机构
[1] Massachusetts Gen Hosp, Dept Neurol, Boston, MA 02114 USA
[2] Clin Data Animat Ctr CDAC, Boston, MA USA
[3] Beth Israel Deaconess Med Ctr, Dept Med, Div Pulm Crit Care & Sleep, Boston, MA USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
dementia; EEG; sleep; machine learning; biomarker; MILD COGNITIVE IMPAIRMENT; ALZHEIMERS-DISEASE; THETA OSCILLATIONS; QUANTITATIVE EEG; LEWY BODIES; ALPHA; FREQUENCY; MEMORY; STATE; CLASSIFICATION;
D O I
10.1093/sleep/zsac286
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Study Objectives Dementia is a growing cause of disability and loss of independence in the elderly, yet remains largely underdiagnosed. Early detection and classification of dementia can help close this diagnostic gap and improve management of disease progression. Altered oscillations in brain activity during sleep are an early feature of neurodegenerative diseases and be used to identify those on the verge of cognitive decline. Methods Our observational cross-sectional study used a clinical dataset of 10 784 polysomnography from 8044 participants. Sleep macro- and micro-structural features were extracted from the electroencephalogram (EEG). Microstructural features were engineered from spectral band powers, EEG coherence, spindle, and slow oscillations. Participants were classified as dementia (DEM), mild cognitive impairment (MCI), or cognitively normal (CN) based on clinical diagnosis, Montreal Cognitive Assessment, Mini-Mental State Exam scores, clinical dementia rating, and prescribed medications. We trained logistic regression, support vector machine, and random forest models to classify patients into DEM, MCI, and CN groups. Results For discriminating DEM versus CN, the best model achieved an area under receiver operating characteristic curve (AUROC) of 0.78 and area under precision-recall curve (AUPRC) of 0.22. For discriminating MCI versus CN, the best model achieved an AUROC of 0.73 and AUPRC of 0.18. For discriminating DEM or MCI versus CN, the best model achieved an AUROC of 0.76 and AUPRC of 0.32. Conclusions Our dementia classification algorithms show promise for incorporating dementia screening techniques using routine sleep EEG. The findings strengthen the concept of sleep as a window into neurodegenerative diseases.
引用
收藏
页数:11
相关论文
共 56 条
[31]  
Montplaisir J, 1998, Sleep Res Online, V1, P147
[32]   MCI patients' EEGs show group differences between those who progress and those who do not progress to AD [J].
Moretti, D. V. ;
Frisoni, G. B. ;
Fracassi, C. ;
Pievani, M. ;
Geroldi, C. ;
Binetti, G. ;
Rossini, P. M. ;
Zanetti, O. .
NEUROBIOLOGY OF AGING, 2011, 32 (04) :563-571
[33]   Individual analysis of EEG frequency and band power in mild Alzheimer's disease [J].
Moretti, DV ;
Babiloni, C ;
Binetti, G ;
Cassetta, E ;
Dal Forno, G ;
Ferreric, F ;
Ferri, R ;
Lanuzza, B ;
Miniussi, C ;
Nobili, F ;
Rodriguez, G ;
Salinari, S ;
Rossini, PM .
CLINICAL NEUROPHYSIOLOGY, 2004, 115 (02) :299-308
[34]  
Moretti DV., 2013, J NEUROL NEUROPHYSIO, V04, P2, DOI [10.4172/2155-9562.1000149, DOI 10.4172/2155-9562.1000149]
[35]  
Mufson Elliott J, 2008, Expert Rev Neurother, V8, P1703, DOI 10.1586/14737175.8.11.1703
[36]   The montreal cognitive assessment, MoCA:: A brief screening tool for mild cognitive impairment [J].
Nasreddine, ZS ;
Phillips, NA ;
Bédirian, V ;
Charbonneau, S ;
Whitehead, V ;
Collin, I ;
Cummings, JL ;
Chertkow, H .
JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2005, 53 (04) :695-699
[37]   Regularized Linear Discriminant Analysis of EEG Features in Dementia Patients [J].
Neto, Emanuel ;
Biessmann, Felix ;
Aurlien, Harald ;
Nordby, Helge ;
Eichele, Tom .
FRONTIERS IN AGING NEUROSCIENCE, 2016, 8
[38]   EEG spectra features discriminate between Alzheimer's and vascular dementia [J].
Neto, Emanuel ;
Allen, Elena A. ;
Aurlien, Harald ;
Nordby, Helge ;
Eichele, Tom .
FRONTIERS IN NEUROLOGY, 2015, 6
[39]   Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology [J].
Petersen, Ronald C. ;
Lopez, Oscar ;
Armstrong, Melissa J. ;
Getchius, Thomas S. D. ;
Ganguli, Mary ;
Gloss, David ;
Gronseth, Gary S. ;
Marson, Daniel ;
Pringsheim, Tamara ;
Day, Gregory S. ;
Sager, Mark ;
Stevens, James ;
Rae-Grant, Alexander .
NEUROLOGY, 2018, 90 (03) :126-135
[40]   Sleep and quantitative EEG in neurodegenerative disorders [J].
Petit, D ;
Gagnon, JF ;
Fantini, ML ;
Ferini-Strambi, L ;
Montplaisir, J .
JOURNAL OF PSYCHOSOMATIC RESEARCH, 2004, 56 (05) :487-496