Data collection and quality challenges in deep learning: a data-centric AI perspective

被引:152
|
作者
Whang, Steven Euijong [1 ]
Roh, Yuji [1 ]
Song, Hwanjun [2 ]
Lee, Jae-Gil [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Daejeon, South Korea
[2] Naver AI Lab, Seongnam, South Korea
基金
新加坡国家研究基金会;
关键词
Data collection; Data quality; Deep learning; Data-centric AI; TRAINING DATA; MACHINE; FAIRNESS; BIAS;
D O I
10.1007/s00778-022-00775-9
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Data-centric AI is at the center of a fundamental shift in software engineering where machine learning becomes the new software, powered by big data and computing infrastructure. Here, software engineering needs to be re-thought where data become a first-class citizen on par with code. One striking observation is that a significant portion of the machine learning process is spent on data preparation. Without good data, even the best machine learning algorithms cannot perform well. As a result, data-centric AI practices are now becoming mainstream. Unfortunately, many datasets in the real world are small, dirty, biased, and even poisoned. In this survey, we study the research landscape for data collection and data quality primarily for deep learning applications. Data collection is important because there is lesser need for feature engineering for recent deep learning approaches, but instead more need for large amounts of data. For data quality, we study data validation, cleaning, and integration techniques. Even if the data cannot be fully cleaned, we can still cope with imperfect data during model training using robust model training techniques. In addition, while bias and fairness have been less studied in traditional data management research, these issues become essential topics in modern machine learning applications. We thus study fairness measures and unfairness mitigation techniques that can be applied before, during, or after model training. We believe that the data management community is well poised to solve these problems.
引用
收藏
页码:791 / 813
页数:23
相关论文
共 50 条
  • [1] Data collection and quality challenges in deep learning: a data-centric AI perspective
    Steven Euijong Whang
    Yuji Roh
    Hwanjun Song
    Jae-Gil Lee
    The VLDB Journal, 2023, 32 : 791 - 813
  • [2] Opportunities and Challenges in Data-Centric AI
    Kumar, Sushant
    Datta, Sumit
    Singh, Vishakha
    Singh, Sanjay Kumar
    Sharma, Ritesh
    IEEE ACCESS, 2024, 12 : 33173 - 33189
  • [3] A Data-Centric Approach for Reducing Carbon Emissions in Deep Learning
    Anselmo, Martin
    Vitali, Monica
    ADVANCED INFORMATION SYSTEMS ENGINEERING, CAISE 2023, 2023, 13901 : 123 - 138
  • [4] A Data-Centric AI Paradigm for Socio-Industrial and Global Challenges
    Majeed, Abdul
    Hwang, Seong Oun
    ELECTRONICS, 2024, 13 (11)
  • [5] ydata-profiling: Accelerating data-centric AI with high-quality data
    Clemente, Fabiana
    Ribeiro, Goncalo Martins
    Quemy, Alexandre
    Santos, Miriam Seoane
    Pereira, Ricardo Cardoso
    Barros, Alex
    NEUROCOMPUTING, 2023, 554
  • [6] A Data-centric AI Framework for Automating Exploratory Data Analysis and Data Quality Tasks
    Patel, Hima
    Guttula, Shanmukha
    Gupta, Nitin
    Hans, Sandeep
    Mittal, Ruhi Sharma
    Lokesh, N.
    ACM JOURNAL OF DATA AND INFORMATION QUALITY, 2023, 15 (04):
  • [7] A data-centric review of deep transfer learning with applications to text data
    Bashath, Samar
    Perera, Nadeesha
    Tripathi, Shailesh
    Manjang, Kalifa
    Dehmer, Matthias
    Streib, Frank Emmert
    INFORMATION SCIENCES, 2022, 585 : 498 - 528
  • [8] Data-centric strategies for deep-learning accelerated salt interpretation
    Gala, Apurva
    Devarakota, Pandu
    DATA-CENTRIC ENGINEERING, 2025, 6
  • [9] DLIO: A Data-Centric Benchmark for Scientific Deep Learning Applications
    Devarajan, Hariharan
    Zheng, Huihuo
    Kougkas, Anthony
    Sun, Xian-He
    Vishwanath, Venkatram
    21ST IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING (CCGRID 2021), 2021, : 81 - 91
  • [10] A Data-Centric Approach to improve performance of deep learning models
    Bhatt, Nikita
    Bhatt, Nirav
    Prajapati, Purvi
    Sorathiya, Vishal
    Alshathri, Samah
    El-Shafai, Walid
    SCIENTIFIC REPORTS, 2024, 14 (01):