Dynamic fine-tuning layer selection using Kullback-Leibler divergence

被引:5
作者
Wanjiku, Raphael Ngigi [1 ]
Nderu, Lawrence [1 ]
Kimwele, Michael [1 ]
机构
[1] Jomo Kenyatta Univ Agr & Technol, Sch Comp & Informat Technol, Nairobi, Kenya
关键词
layer selection; Kullback-Leibler divergence; weight-correlation;
D O I
10.1002/eng2.12595
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The selection of layers in the transfer learning fine-tuning process ensures a pre-trained model's accuracy and adaptation in a new target domain. However, the selection process is still manual and without clearly defined criteria. If the wrong layers in a neural network are selected and used, it could lead to poor accuracy and model generalization in the target domain. This paper introduces the use of Kullback-Leibler divergence on the weight correlations of the model's convolutional neural network layers. The approach identifies the positive and negative weights in the ImageNet initial weights selecting the best-suited layers of the network depending on the correlation divergence. We experiment on four publicly available datasets and six ImageNet pre-trained models used in past studies for results comparisons. This proposed approach method yields better accuracies than the standard fine-tuning baselines with a margin accuracy rate of 10.8%-24%, thereby leading to better model adaptation for target transfer learning tasks.
引用
收藏
页数:26
相关论文
共 79 条
  • [1] [Anonymous], 2013, ICML workshop on challenges in representation learning
  • [2] [Anonymous], 2017, European Journal of Technique, DOI 10.23884/ejt.2017.7.2.11
  • [3] Barkved K., 2022, How to know if your machine learning model has good performance | obviously AI
  • [4] Bazan E., 2019, QUANTITATIVE ANAL SI
  • [5] Transfer Learning for Drug Discovery
    Cai, Chenjing
    Wang, Shiwei
    Xu, Youjun
    Zhang, Weilin
    Tang, Ke
    Ouyang, Qi
    Lai, Luhua
    Pei, Jianfeng
    [J]. JOURNAL OF MEDICINAL CHEMISTRY, 2020, 63 (16) : 8683 - 8694
  • [6] Deep transfer learning mechanism for fine-grained cross-domain sentiment classification
    Cao, Zixuan
    Zhou, Yongmei
    Yang, Aimin
    Peng, Sancheng
    [J]. CONNECTION SCIENCE, 2021, 33 (04) : 911 - 928
  • [7] Opportunities and obstacles for deep learning in biology and medicine
    Ching, Travers
    Himmelstein, Daniel S.
    Beaulieu-Jones, Brett K.
    Kalinin, Alexandr A.
    Do, Brian T.
    Way, Gregory P.
    Ferrero, Enrico
    Agapow, Paul-Michael
    Zietz, Michael
    Hoffman, Michael M.
    Xie, Wei
    Rosen, Gail L.
    Lengerich, Benjamin J.
    Israeli, Johnny
    Lanchantin, Jack
    Woloszynek, Stephen
    Carpenter, Anne E.
    Shrikumar, Avanti
    Xu, Jinbo
    Cofer, Evan M.
    Lavender, Christopher A.
    Turaga, Srinivas C.
    Alexandari, Amr M.
    Lu, Zhiyong
    Harris, David J.
    DeCaprio, Dave
    Qi, Yanjun
    Kundaje, Anshul
    Peng, Yifan
    Wiley, Laura K.
    Segler, Marwin H. S.
    Boca, Simina M.
    Swamidass, S. Joshua
    Huang, Austin
    Gitter, Anthony
    Greene, Casey S.
    [J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2018, 15 (141)
  • [8] Multisource Transfer Learning With Convolutional Neural Networks for Lung Pattern Analysis
    Christodoulidis, Stergios
    Anthimopoulos, Marios
    Ebner, Lukas
    Christe, Andreas
    Mougiakakou, Stavroula
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2017, 21 (01) : 76 - 84
  • [9] Connor R., 2013, INT C SIMILARITY SEA
  • [10] DeeapAi, 2022, WHAT IS COS SIM