Pre-training molecular representation model with spatial geometry for property prediction

被引:3
作者
Li, Yishui [1 ,2 ]
Wang, Wei [3 ]
Liu, Jie [1 ,2 ]
Wu, Chengkun [1 ,2 ]
机构
[1] Natl Univ Def Technol, Lab Digitizing Software Frontier Equipment, Deya Rd, Changsha 410073, Peoples R China
[2] Natl Univ Def Technol, Natl Key Lab Parallel & Distributed Comp, Deya Rd, Changsha 410073, Peoples R China
[3] Natl Supercomp Ctr Tianjin, TEDA Sixth St, Tianjin 300450, Peoples R China
关键词
Molecular representation; Graph Isomorphic Network; Molecular property prediction; PERFORMANCE; DISCOVERY; SMILES;
D O I
10.1016/j.compbiolchem.2024.108023
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
AI-enhanced bioinformatics and cheminformatics pivots on generating increasingly descriptive and generalized molecular representation. Accurate prediction of molecular properties needs a comprehensive description of molecular geometry. We design a novel Graph Isomorphic Network (GIN) based model integrating a threelevel network structure with a dual-level pre-training approach that aligns the characteristics of molecules. In our Spatial Molecular Pre-training (SMPT) Model, the network can learn implicit geometric information in layers from lower to higher according to the dimension. Extensive evaluations against established baseline models validate the enhanced efficacy of SMPT, with notable accomplishments in classification tasks. These results emphasize the importance of spatial geometric information in molecular representation modeling and demonstrate the potential of SMPT as a valuable tool for property prediction.
引用
收藏
页数:7
相关论文
共 45 条
[1]   Geometric deep learning on molecular representations [J].
Atz, Kenneth ;
Grisoni, Francesca ;
Schneider, Gisbert .
NATURE MACHINE INTELLIGENCE, 2021, 3 (12) :1023-1032
[2]   Algebraic graph-assisted bidirectional transformers for molecular property prediction [J].
Chen, Dong ;
Gao, Kaifu ;
Duc Duy Nguyen ;
Chen, Xin ;
Jiang, Yi ;
Wei, Guo-Wei ;
Pan, Feng .
NATURE COMMUNICATIONS, 2021, 12 (01)
[3]   Spatial Graph Convolutional Networks [J].
Danel, Tomasz ;
Spurek, Przemyslaw ;
Tabor, Jacek ;
Smieja, Marek ;
Struski, Lukasz ;
Slowik, Agnieszka ;
Maziarka, Lukasz .
NEURAL INFORMATION PROCESSING, ICONIP 2020, PT V, 2021, 1333 :668-675
[4]   CLUSTER SEPARATION MEASURE [J].
DAVIES, DL ;
BOULDIN, DW .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1979, 1 (02) :224-227
[5]   Unsupervised Visual Representation Learning by Context Prediction [J].
Doersch, Carl ;
Gupta, Abhinav ;
Efros, Alexei A. .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1422-1430
[6]   Geometry-enhanced molecular representation learning for property prediction [J].
Fang, Xiaomin ;
Liu, Lihang ;
Lei, Jiediong ;
He, Donglong ;
Zhang, Shanzhuo ;
Zhou, Jingbo ;
Wang, Fan ;
Wu, Hua ;
Wang, Haifeng .
NATURE MACHINE INTELLIGENCE, 2022, 4 (02) :127-134
[7]  
Gasteiger J., 2020, arXiv, DOI 10.48550/arXiv.2003.03123
[8]  
Gasteiger J, 2021, 35 C NEURAL INFORM P, V34
[9]  
Goh G. B., 2018, arXiv
[10]  
Halgren TA, 1996, J COMPUT CHEM, V17, P490, DOI [10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO