Maximum degree and spectral radius of graphs in terms of size

被引:3
作者
Wang, Zhiwen [1 ]
Guo, Ji-Ming [1 ]
机构
[1] East China Univ Sci & Technol, Sch Math, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Spectral radius; Maximum degree; Size; SIGNLESS LAPLACIAN; INDEX;
D O I
10.1007/s10801-023-01289-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Denote by rho(G) and kappa(G) the spectral radius and the signless Laplacian spectral radius of a graph G, respectively. Let k >= 0 be a fixed integer and G be a graph of size m which is large enough. We show that if rho(G) >= root m - k, then C-4 subset of G or K-1,K-m-k subset of G. Moreover, we prove that if kappa(G) >= m - k + 1, then K-1,K-m-k subset of G. Both these results extend some known results.
引用
收藏
页码:213 / 224
页数:12
相关论文
共 27 条
[1]   The signless Laplacian spectral radius of graphs with forbidding linear forests [J].
Chen, Ming-Zhu ;
Liu, A-Ming ;
Zhang, Xiao-Dong .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 591 :25-43
[2]   The Maximum Spectral Radius of Graphs Without Friendship Subgraphs [J].
Cioaba, Sebastian ;
Feng, Lihua ;
Tait, Michael ;
Zhang, Xiao-Dong .
ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (04) :1-19
[3]   TOWARDS A SPECTRAL THEORY OF GRAPHS BASED ON THE SIGNLESS LAPLACIAN, III [J].
Cvetkovic, Dragos ;
Simic, Slobodan K. .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2010, 4 (01) :156-166
[4]   TOWARDS A SPECTRAL THEORY OF GRAPHS BASED ON THE SIGNLESS LAPLACIAN, I [J].
Cvetkovic, Dragos ;
Simic, Slobodan K. .
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2009, 85 (99) :19-33
[5]   Towards a spectral theory of graphs based on the signless Laplacian, II [J].
Cvetkovic, Dragos ;
Simic, Slobodan K. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) :2257-2272
[6]  
Horn R.A., 1991, Matrix Analysis
[7]   Eigenvalues and triangles in graphs [J].
Lin, Huiqiu ;
Ning, Bo ;
Wu, Baoyindureng .
COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (02) :258-270
[8]   Maxima of L-index and Q-index: Graphs with given size and diameter [J].
Lou, Zhenzhen ;
Guo, Ji-Ming ;
Wang, Zhiwen .
DISCRETE MATHEMATICS, 2021, 344 (10)
[9]   Some inequalities for the largest eigenvalue of a graph [J].
Nikiforov, V .
COMBINATORICS PROBABILITY & COMPUTING, 2002, 11 (02) :179-189
[10]  
Nikiforov V., ARXIV