Maximum degree and spectral radius of graphs in terms of size

被引:0
作者
Wang, Zhiwen [1 ]
Guo, Ji-Ming [1 ]
机构
[1] East China Univ Sci & Technol, Sch Math, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Spectral radius; Maximum degree; Size; SIGNLESS LAPLACIAN; INDEX;
D O I
10.1007/s10801-023-01289-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Denote by rho(G) and kappa(G) the spectral radius and the signless Laplacian spectral radius of a graph G, respectively. Let k >= 0 be a fixed integer and G be a graph of size m which is large enough. We show that if rho(G) >= root m - k, then C-4 subset of G or K-1,K-m-k subset of G. Moreover, we prove that if kappa(G) >= m - k + 1, then K-1,K-m-k subset of G. Both these results extend some known results.
引用
收藏
页码:213 / 224
页数:12
相关论文
共 27 条
  • [1] The signless Laplacian spectral radius of graphs with forbidding linear forests
    Chen, Ming-Zhu
    Liu, A-Ming
    Zhang, Xiao-Dong
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 591 : 25 - 43
  • [2] The Maximum Spectral Radius of Graphs Without Friendship Subgraphs
    Cioaba, Sebastian
    Feng, Lihua
    Tait, Michael
    Zhang, Xiao-Dong
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (04) : 1 - 19
  • [3] TOWARDS A SPECTRAL THEORY OF GRAPHS BASED ON THE SIGNLESS LAPLACIAN, III
    Cvetkovic, Dragos
    Simic, Slobodan K.
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2010, 4 (01) : 156 - 166
  • [4] TOWARDS A SPECTRAL THEORY OF GRAPHS BASED ON THE SIGNLESS LAPLACIAN, I
    Cvetkovic, Dragos
    Simic, Slobodan K.
    [J]. PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2009, 85 (99): : 19 - 33
  • [5] Towards a spectral theory of graphs based on the signless Laplacian, II
    Cvetkovic, Dragos
    Simic, Slobodan K.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) : 2257 - 2272
  • [6] Horn R. A., 2012, Topics in Matrix Analysis
  • [7] Eigenvalues and triangles in graphs
    Lin, Huiqiu
    Ning, Bo
    Wu, Baoyindureng
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (02) : 258 - 270
  • [8] Maxima of L-index and Q-index: Graphs with given size and diameter
    Lou, Zhenzhen
    Guo, Ji-Ming
    Wang, Zhiwen
    [J]. DISCRETE MATHEMATICS, 2021, 344 (10)
  • [9] Some inequalities for the largest eigenvalue of a graph
    Nikiforov, V
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2002, 11 (02) : 179 - 189
  • [10] Nikiforov V., ARXIV