L-stable spectral deferred correction methods and applications to phase field models
被引:1
|
作者:
Yao, Lin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
Xinjiang Normal Univ, Sch Math Sci, Urumqi 830017, Peoples R ChinaUniv Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
Yao, Lin
[1
,2
]
Xia, Yinhua
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R ChinaUniv Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
Xia, Yinhua
[1
]
Xu, Yan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R ChinaUniv Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
Xu, Yan
[1
]
机构:
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[2] Xinjiang Normal Univ, Sch Math Sci, Urumqi 830017, Peoples R China
This paper presents the L-stable spectral deferred correction (SDC) methods with low stages. These schemes are initiated by the Crank-Nicolson method. We adopt the linear stabilization approach for the phase field models to obtain the linear implicit SDC scheme. This is done by adding and subtracting the linear stabilization operators that are provided for the different phase field problems. Without loss of the low-stage property, the extrapolation technique is also used in the prediction step of the semi-implicit SDC method. Numerical experiments are given to validate the high-order accuracy and the energy decay property of the proposed semi-implicit SDC methods for the Allen-Cahn, Cahn-Hilliard, and molecular beam epitaxy equations.
机构:
Foshan Univ, Sch Math & Big Data, Foshan 528000, Guangdong, Peoples R ChinaFoshan Univ, Sch Math & Big Data, Foshan 528000, Guangdong, Peoples R China
Lv, Chunwan
论文数: 引用数:
h-index:
机构:
Azaiez, Mejdi
Xu, Chuanju
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Xiamen 361005, Peoples R ChinaFoshan Univ, Sch Math & Big Data, Foshan 528000, Guangdong, Peoples R China