Microcanonical Hamiltonian Monte Carlo

被引:0
作者
Robnik, Jakob [1 ]
De Luca, G. Bruno [2 ]
Silverstein, Eva [2 ]
Seljak, Uros [1 ,3 ]
机构
[1] Univ Calif Berkeley, Phys Dept, Berkeley, CA 94720 USA
[2] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94306 USA
[3] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Monte Carlo Sampling; Hamiltonian Dynamics; Langevin Dynamics; Bayesian inference;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We develop Microcanonical Hamiltonian Monte Carlo (MCHMC), a class of models that follow fixed energy Hamiltonian dynamics, in contrast to Hamiltonian Monte Carlo (HMC), which follows canonical distribution with different energy levels. MCHMC tunes the Hamiltonian function such that the marginal of the uniform distribution on the constant-energy surface over the momentum variables gives the desired target distribution. We show that MCHMC requires occasional energy-conserving billiard-like momentum bounces for ergodicity, analogous to momentum resampling in HMC. We generalize the concept of bounces to a continuous version with partial direction preserving bounces at every step, which gives energy-conserving underdamped Langevin-like dynamics with non-Gaussian noise (MCLMC). MCHMC and MCLMC exhibit favorable scalings with condition number and dimensionality. We develop an efficient hyperparameter tuning scheme that achieves high performance and consistently outperforms NUTS HMC on several standard benchmark problems, in some cases by orders of magnitude.
引用
收藏
页数:34
相关论文
共 50 条
[41]   Markov Chain Monte Carlo methods1. Simple Monte Carlo [J].
K B Athreya ;
Mohan Delampady ;
T Krishnan .
Resonance, 2003, 8 (4) :17-26
[42]   Modified Hamiltonian Monte Carlo-based Bayesian finite element model updating of steel truss bridge [J].
Baisthakur, Shubham ;
Chakraborty, Arunasis .
STRUCTURAL CONTROL & HEALTH MONITORING, 2020, 27 (08)
[43]   Physics Informed Neural Networks and Gaussian Processes-Hamiltonian Monte Carlo to Solve Ordinary Differential Equations [J].
Chachalo, Roberth ;
Astudillo, Jaime ;
Infante, Saba ;
Pineda, Israel .
INFORMATION AND COMMUNICATION TECHNOLOGIES, TICEC 2024, 2025, 2273 :253-268
[44]   Bayesian inference of a queueing system with short- or long-tailed distributions based on Hamiltonian Monte Carlo [J].
Alawamy, Eman Ahmed ;
Liu, Yuanyuan ;
Zhao, Yiqiang Q. .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
[45]   Comparison between the Hamiltonian Monte Carlo method and the Metropolis- Hastings method for coseismic fault model estimation [J].
Yamada, Taisuke ;
Ohno, Keitaro ;
Ohta, Yusaku .
EARTH PLANETS AND SPACE, 2022, 74 (01)
[46]   Bayesian inference using Hamiltonian Monte-Carlo algorithm for nonlinear joint modeling in the context of cancer immunotherapy [J].
Kerioui, Marion ;
Mercier, Francois ;
Bertrand, Julie ;
Tardivon, Coralie ;
Bruno, Rene ;
Guedj, Jeremie ;
Desmee, Solene .
STATISTICS IN MEDICINE, 2020, 39 (30) :4853-4868
[48]   Adaptive meta-learning stochastic gradient Hamiltonian Monte Carlo simulation for Bayesian updating of structural dynamic models [J].
Meng, Xianghao ;
Beck, James L. ;
Huang, Yong ;
Li, Hui .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 437
[49]   Hamiltonian Monte Carlo with strict convergence criteria reduces run-to-run variability in forensic DNA mixture deconvolution [J].
Susik, Mateusz ;
Schoenborn, Holger ;
Sbalzarini, Ivo F. .
FORENSIC SCIENCE INTERNATIONAL-GENETICS, 2022, 60
[50]   Optimized Population Monte Carlo [J].
Elvira, Victor ;
Chouzenoux, Emilie .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 :2489-2501