Microcanonical Hamiltonian Monte Carlo

被引:0
作者
Robnik, Jakob [1 ]
De Luca, G. Bruno [2 ]
Silverstein, Eva [2 ]
Seljak, Uros [1 ,3 ]
机构
[1] Univ Calif Berkeley, Phys Dept, Berkeley, CA 94720 USA
[2] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94306 USA
[3] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Monte Carlo Sampling; Hamiltonian Dynamics; Langevin Dynamics; Bayesian inference;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We develop Microcanonical Hamiltonian Monte Carlo (MCHMC), a class of models that follow fixed energy Hamiltonian dynamics, in contrast to Hamiltonian Monte Carlo (HMC), which follows canonical distribution with different energy levels. MCHMC tunes the Hamiltonian function such that the marginal of the uniform distribution on the constant-energy surface over the momentum variables gives the desired target distribution. We show that MCHMC requires occasional energy-conserving billiard-like momentum bounces for ergodicity, analogous to momentum resampling in HMC. We generalize the concept of bounces to a continuous version with partial direction preserving bounces at every step, which gives energy-conserving underdamped Langevin-like dynamics with non-Gaussian noise (MCLMC). MCHMC and MCLMC exhibit favorable scalings with condition number and dimensionality. We develop an efficient hyperparameter tuning scheme that achieves high performance and consistently outperforms NUTS HMC on several standard benchmark problems, in some cases by orders of magnitude.
引用
收藏
页数:34
相关论文
共 50 条
  • [21] Decentralized Stochastic Gradient Langevin Dynamics and Hamiltonian Monte Carlo
    Gurbuzbalaban, Mert
    Gao, Xuefeng
    Hu, Yuanhan
    Zhu, Lingjiong
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [22] Discontinuous Hamiltonian Monte Carlo for discrete parameters and discontinuous likelihoods
    Nishimura, Akihiko
    Dunson, David B.
    Lu, Jianfeng
    BIOMETRIKA, 2020, 107 (02) : 365 - 380
  • [23] Hamiltonian Monte Carlo acceleration using surrogate functions with random bases
    Cheng Zhang
    Babak Shahbaba
    Hongkai Zhao
    Statistics and Computing, 2017, 27 : 1473 - 1490
  • [24] Hamiltonian Monte Carlo acceleration using surrogate functions with random bases
    Zhang, Cheng
    Shahbaba, Babak
    Zhao, Hongkai
    STATISTICS AND COMPUTING, 2017, 27 (06) : 1473 - 1490
  • [25] Faster estimation of Bayesian models in ecology using Hamiltonian Monte Carlo
    Monnahan, Cole C.
    Thorson, James T.
    Branch, Trevor A.
    METHODS IN ECOLOGY AND EVOLUTION, 2017, 8 (03): : 339 - 348
  • [26] Adaptive multi-stage integration schemes for Hamiltonian Monte Carlo
    Nagar, Lorenzo
    Fernandez-Pendas, Mario
    Sanz-Serna, Jesus Maria
    Akhmatskaya, Elena
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 502
  • [27] Radio galaxy shape measurement with Hamiltonian Monte Carlo in the visibility domain
    Rivi, M.
    Lochner, M.
    Balan, S. T.
    Harrison, I.
    Abdalla, F. B.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 482 (01) : 1096 - 1109
  • [28] Stochastic gradient Hamiltonian Monte Carlo with variance reduction for Bayesian inference
    Zhize Li
    Tianyi Zhang
    Shuyu Cheng
    Jun Zhu
    Jian Li
    Machine Learning, 2019, 108 : 1701 - 1727
  • [29] Stochastic gradient Hamiltonian Monte Carlo with variance reduction for Bayesian inference
    Li, Zhize
    Zhang, Tianyi
    Cheng, Shuyu
    Zhu, Jun
    Li, Jian
    MACHINE LEARNING, 2019, 108 (8-9) : 1701 - 1727
  • [30] Demystifying Monte Carlo methods in R: A guide from Metropolis-Hastings to Hamiltonian Monte Carlo with biological growth equation examples
    Mestry, Dipali Vasudev
    Bhowmick, Amiya Ranjan
    ECOLOGICAL MODELLING, 2025, 501