Approximations of Lévy processes by integrated fast oscillating Ornstein-Uhlenbeck processes

被引:0
作者
Feng, Lingyu [1 ,2 ]
Gao, Ting [1 ,2 ]
Li, Ting [1 ]
Lin, Zhongjie [1 ]
Liu, Xianming [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Ctr Math Sci, Wuhan 430074, Peoples R China
关键词
Levy processes; alpha-stable Levy processes; integrated Ornstein-Uhlenbeck processes; Skorokhod M-1-topology; DIFFERENTIAL-EQUATIONS DRIVEN;
D O I
10.1142/S0219493723400051
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study a smooth approximation of an arbitrary cadlag Levy process. Such approximation processes are known as integrated fast oscillating Ornstein-Uhlenbeck (OU) processes. We know that approximating processes are continuous, while the limit of processes may be discontinuous, so convergence in uniform topology or Skorokhod J(1)-topology will not hold in general. Therefore, we establish an approximation in Skorokhod M-1-topology. Note that the convergence is almost surely, which is an extension result of Hintze and Pavlyukevich.
引用
收藏
页数:12
相关论文
共 18 条
[1]  
Bertoin Jean, 1996, Cambridge Tracts in Mathematics, V121
[2]   THE DISTRIBUTION OF EXIT TIMES FOR WEAKLY COLORED NOISE [J].
HAGAN, PS ;
DOERING, CR ;
LEVERMORE, CD .
JOURNAL OF STATISTICAL PHYSICS, 1989, 54 (5-6) :1321-1352
[3]  
Hintze I., 2014, BERNOULLI20, P265
[4]  
Horsthemke R., 1984, NOISE INDUCED TRANSI, V5
[5]   A Wong-Zakai approximation for random invariant manifolds [J].
Jiang, Tao ;
Liu, Xianming ;
Duan, Jinqiao .
JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (12)
[6]   APPROXIMATION FOR RANDOM STABLE MANIFOLDS UNDER MULTIPLICATIVE CORRELATED NOISES [J].
Jiang, Tao ;
Liu, Xianming ;
Duan, Jinqiao .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (09) :3163-3174
[7]   AN INTEGRAL-REPRESENTATION FOR SELFDECOMPOSABLE BANACH-SPACE VALUED RANDOM-VARIABLES [J].
JUREK, ZJ ;
VERVAAT, W .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 62 (02) :247-262
[8]  
Kallsen J., 2001, Theory of Probability and Its Applications, V46, p522A, DOI 10.1137/S0040585X97979184
[9]  
Kummel K., 2016, THESIS FRIEDRICH SCH
[10]  
KURTZ TG, 1995, ANN I H POINCARE-PR, V31, P351