Hydrogen-rich syngas generation through microwave plasma reforming of greenhouse gases

被引:10
作者
Akande, Olugbenga [1 ,3 ,4 ]
Lee, Bongju [3 ,4 ]
Okolie, Jude A. [2 ]
Museba, Hugues Nkomba [1 ]
机构
[1] Handong Global Univ, Dept Comp Sci & Elect Engn, 558 Handong Ro, Pohang 37554, Gyeongsangbuk D, South Korea
[2] Univ Oklahoma, Gallogly Coll Engn, Norman, OK USA
[3] Green Sci Corp, 62 Gyesan 11 Gil, Taebaek Si 26050, Gangwon Do, South Korea
[4] Handong Global Univ, Dept Adv Convergence, 558 Handong Ro, Pohang 37554, Gyeongsangbuk D, South Korea
关键词
Noncatalytic greenhouse gas; reforming; Microwave plasma torch; Hydrogen generation; METHANE; ENERGY; FUEL;
D O I
10.1016/j.ijhydene.2023.05.262
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study examined the effectiveness of a 915 MHz atmospheric pressure microwave torch for bulk syngas or hydrogen generation via noncatalytic greenhouse gas (GHG) reforming and its flexibility regarding the amount of soot formed by the process. The investigation shows that plasma-GHG reforming for mass hydrogen generation is feasible without a catalyst at high gas flow rate and microwave power. The best hydrogen production rate and energy yield were 1672 g (H2)/h and 41.8 g (H2)/ kWh, respectively, at 160 lpm gas flow rate and 40 kW microwave power at a CH4/CO2 ratio of 1. The conversion rates of CH4 and CO2 under the same conditions were 95.59% and 95.59%, respectively. The plasma reforming method employed in this study shows its excellent potential for industrial application. (c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved
引用
收藏
页码:34649 / 34658
页数:10
相关论文
共 47 条
[1]   Hydrogen as an energy vector [J].
Abdin, Zainul ;
Zafaranloo, Ali ;
Rafiee, Ahmad ;
Merida, Walter ;
Lipinski, Wojciech ;
Khalilpour, Kaveh R. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 120
[2]   Plasma steam methane reforming (PSMR) using a microwave torch for commercial-scale distributed hydrogen production [J].
Akande, Olugbenga ;
Lee, BongJu .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (05) :2874-2884
[3]   Bibliometric studies and impediments to valorization of dry reforming of methane for hydrogen production [J].
Alhassan, M. ;
Jalil, A. A. ;
Nabgan, W. ;
Hamid, M. Y. S. ;
Bahari, M. B. ;
Ikram, M. .
FUEL, 2022, 328
[4]   An overview on dry reforming of methane: strategies to reduce carbonaceous deactivation of catalysts [J].
Arora, Shalini ;
Prasad, R. .
RSC ADVANCES, 2016, 6 (110) :108668-108688
[5]   Dry Reforming of Methane with Mesoporous Ni/ZrO2 Catalyst [J].
Azeem, Subhan ;
Aslam, Rabya ;
Saleem, Mahmood .
INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING, 2022, 2022
[6]   Plasma Technology: An Emerging Technology for Energy Storage [J].
Bogaerts, Annemie ;
Neyts, Erik C. .
ACS ENERGY LETTERS, 2018, 3 (04) :1013-1027
[7]   CO2 Microwave Plasma-Catalytic Reactor for Efficient Reforming of Methane to Syngas [J].
Chun, Se Min ;
Shin, Dong Hun ;
Ma, Suk Hwal ;
Yang, Geon Woo ;
Hong, Yong Cheol .
CATALYSTS, 2019, 9 (03)
[8]   Reforming of methane to syngas in a microwave plasma torch at atmospheric pressure [J].
Chun, Se Min ;
Hong, Yong Cheol ;
Choi, Dae Hyun .
JOURNAL OF CO2 UTILIZATION, 2017, 19 :221-229
[9]   Syngas production via methane steam reforming with oxygen: plasma reactors versus chemical reactors [J].
Cormier, JM ;
Rusu, I .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2001, 34 (18) :2798-2803
[10]   Microwave plasma-based method of hydrogen production via combined steam reforming of methane [J].
Czylkowski, Dariusz ;
Hrycak, Bartosz ;
Jasinski, Mariusz ;
Dors, Miroslaw ;
Mizeraczyk, Jerzy .
ENERGY, 2016, 113 :653-661