A framework for flood depth using hydrodynamic modeling and machine learning in the coastal province of Vietnam

被引:4
|
作者
Nguyen, Huu Duy [1 ]
Dang, Dinh Kha [1 ]
Nguyen, Y. Nhu [1 ]
Van, Chien Pham [2 ]
Truong, Quang-Hai [3 ]
Bui, Quang-Thanh [1 ]
Petrisor, Alexandru-Ionut [4 ,5 ,6 ,7 ]
机构
[1] Vietnam Natl Univ, VNU Univ Sci, Hanoi, Vietnam
[2] Thuy Loi Univ, 175 Tay Son, Hanoi, Vietnam
[3] Vietnam Natl Univ VNU, Inst Vietnamese Studies & Dev Sci, Hanoi 10000, Vietnam
[4] Ion Mincu Univ Architecture & Urbanism, Bucharest 10014, Romania
[5] Tech Univ Moldova, Fac Architecture & Urban Planning, Dept Architecture, Kishinev 2004, Moldova
[6] Natl Inst Res Dev Tourism, Bucharest 50741, Romania
[7] Urbanism & Sustainable Spatial Dev URBAN INCERC, Natl Inst Res & Dev Construct, Bucharest, Romania
来源
VIETNAM JOURNAL OF EARTH SCIENCES | 2023年 / 45卷 / 03期
关键词
Flood depth; machine learning; hydrodynamics; Quang Tri; Vietnam; SUPPORT VECTOR MACHINE; HAZARD ASSESSMENT; RISK-MANAGEMENT; HYBRID APPROACH; RIVER-BASIN; SUSCEPTIBILITY; COMBINATION; CLIMATE; ENGLAND; TREES;
D O I
10.15625/2615-9783/18644
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
regression (R2=0.7). This integration of hydrodynamic modeling and machine learning complements the framework much of the existing literature. It can provide decision-makers and local authorities with an advanced flood warning tool and contribute to improving sustainable development strategies in this and similar regions. Keywords: Flood depth, machine learning, hydrodynamics, Quang Tri, Vietnam. Introduction Flood is one of the most common natural disasters and, every year, causes significant *Corresponding author, Email: nguyenhuuduy@hus.edu.vn 456 damage to economies, injury, and loss of life (Hens et al., 2018; Shafizadeh-Moghadam et al., 2018; Nguyen, 2022). According to EM-DAT data, approximately 175,000 people have died, and 2.2 billion have been affected
引用
收藏
页码:456 / 478
页数:23
相关论文
共 50 条
  • [41] Implementation of a Hybridized Machine Learning Framework for Flood Risk Management
    Akinyokun, Oluwole Charles
    Inyang, Udoinyang Godwin
    Akpan, Emem Etok
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, 2020, 1038 : 268 - 291
  • [42] Predicting Future Urban Flood Risk Using Land Change and Hydraulic Modeling in a River Watershed in the Central Province of Vietnam
    Nguyen, Huu Duy
    Fox, Dennis
    Dang, Dinh Kha
    Pham, Le Tuan
    Viet Du, Quan Vu
    Nguyen, Thi Ha Thanh
    Dang, Thi Ngoc
    Tran, Van Truong
    Vu, Phuong Lan
    Nguyen, Quoc-Huy
    Nguyen, Tien Giang
    Bui, Quang-Thanh
    Petrisor, Alexandru-Ionut
    REMOTE SENSING, 2021, 13 (02) : 1 - 24
  • [43] Flood modeling in the Ba River basin using a coupled hydrodynamic model—MIKE FLOOD
    Tuan L.A.
    Van C.T.
    Binh D.V.
    Kantoush S.A.
    Sumi T.
    Quyen L.V.
    Huong T.T.
    River, 2024, 3 (02): : 199 - 207
  • [44] Flood monitoring in an Giang Province, Vietnam using global flood mapper and Sentinel-1 SAR
    Afifi, Ahmed S.
    Magdy, Ahmed
    REMOTE SENSING LETTERS, 2024, 15 (09) : 883 - 892
  • [45] Flood Forecasting Using Machine Learning: A Review
    Ghorpade, Parag
    Gadge, Aditya
    Lende, Akash
    Chordiya, Hitesh
    Gosavi, Gita
    Mishra, Asima
    Hooli, Basavaraj
    Ingle, Yashwant S.
    Shaikh, Nuzhat
    2021 8TH INTERNATIONAL CONFERENCE ON SMART COMPUTING AND COMMUNICATIONS (ICSCC), 2021, : 32 - 36
  • [46] GROUNDWATER POTENTIAL ASSESSMENT IN GIA LAI PROVINCE (VIETNAM) USING MACHINE LEARNING, REMOTE SENSING AND GIS
    Nguyen, Huu Duy
    Giang, Van Trong
    Truong, Quang-hai
    Serban, Gheorghe
    Petrisor, Alexandru-Ionut
    GEOGRAPHIA TECHNICA, 2024, 19 (02): : 13 - 32
  • [47] INVESTIGATION OF THE EFFECTS OF WETLAND VEGETATION ON COASTAL FLOOD REDUCTION USING HYDRODYNAMIC SIMULATION
    Yadav, Pawan Kumar
    Thapa, Sandesh
    Han, Xiao
    Richmond, Cecilia
    Zhang, Ning
    PROCEEDINGS OF THE ASME/JSME/KSME JOINT FLUIDS ENGINEERING CONFERENCE, 2015, VOL 1, 2015,
  • [48] Spatial prediction of flood susceptible areas using machine learning methods in the Siahkhor Watershed of Kermanshah province
    Kiani, Ali
    Motamedvaziri, Baharak
    Khaleghi, Mohammad Reza
    Ahmadi, Hassan
    EARTH SCIENCE INFORMATICS, 2025, 18 (01)
  • [49] Spatial analysis of flood susceptibility in Coastal area of Pakistan using machine learning models and SAR imagery
    Hussain, Muhammad Afaq
    Chen, Zhanlong
    Zhou, Yulong
    Ullah, Hafiz
    Ying, Ma
    ENVIRONMENTAL EARTH SCIENCES, 2025, 84 (05)
  • [50] Machine Learning for a Heterogeneous Water Modeling Framework
    Frame, Jonathan M.
    Araki, Ryoko
    Bhuiyan, Soelem Aafnan
    Bindas, Tadd
    Rapp, Jeremy
    Bolotin, Lauren
    Deardorff, Emily
    Liu, Qiyue
    Haces-Garcia, Francisco
    Liao, Mochi
    Frazier, Nels
    Ogden, Fred L.
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2025, 61 (01):