Highly stretchable, self-healing, self-adhesive and conductive nanocomposite hydrogels based on multi-reversible interactions as multifunctional strain sensors

被引:10
作者
Chen, Meijun [1 ]
Lei, Kun [1 ]
Guo, Pengshan [1 ]
Liu, Xin [1 ]
Zhao, Pengchao [1 ]
Han, Meng [1 ]
Cai, Bianyun [1 ]
Li, Guangda [1 ]
Li, Jinghua [1 ]
Cui, Jingqiang [2 ]
Wang, Xinling [3 ]
机构
[1] Henan Univ Sci & Technol, Sch Med Technol & Engn, Affiliated Hosp 1, 263 Kaiyuan Rd, Luoyang 471023, Peoples R China
[2] Henan Tuoren Med Device Res Inst Co LTD, South Weiqi Rd, Changyuan 453424, Xinxiang, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Conductive hydrogel; Nanocomposite; Zwitterionic polymer; Flexible sensor; Multi-reversible interactions; DOUBLE-NETWORK; B-11; NMR; TOUGH; COMPLEXATION; BORATE;
D O I
10.1016/j.eurpolymj.2023.112482
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Construction of highly stretchable and sensitive flexible strain sensors is of great significance for wide applications in human-computer interaction, wearable devices, and electronic skins. However, it turned out to be not effortless to integrate the two seemingly contrary features of high stretchability and sensitivity into a system. Herein, we designed a nanocomposite conductive hydrogel (NCCH) composed of zwitterionic poly(HEAA-co-SBMA) polymers and lithium magnesium silicate (XLG) by means of multi-reversible molecular interactions (MRMIs) including borate ester bonds between polyHEAA and borax, hydrogen bonds, and polySBMA-XLG-based electrostatic interaction, endowing the NCCH with enhanced mechanical, self-healing, adhesive, biocompatible, and sensing performances. The MRMI method enabled NCCHs to obtain an excellent stretchability (-1080 %)/compressibility (-98.5 %), a tensile strength of -0.06 MPa, a good self-healing with a fracture strain recovery of 90.5 %, and a strong adhesion on various hard and soft substrates (e.g. a adhesive shear force of 60 kPa to pigskin tissues). Besides, the integration of zwitterionic polySBMA and conductive XLG promoted charge transfer.by optimal ioinic channels. Based on these outstanding strengths, the NCCHs were farther rationally fabricated as multifunctional strain sensors with remarkable sensing stability for fast and accurately detecting strain/ pressure-induced deformation, joint motions, and animal heartbeats. Notably, the excellent self-healing property of NCCH sensors can facilitate their long-period usage and complete recyclability for avoiding wastes. The new MRMI-based NCCH sensor without any conductive additives is deemed to provide a new strategy for broadening their multifunctional strain sensor and healthcare monitoring applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Self-healing, self-adhesive, stretchable and flexible conductive hydrogels for high-performance strain sensors
    Li, Ruirui
    Ren, Jie
    Li, Meng
    Zhang, Minmin
    Li, Yan
    Yang, Wu
    SOFT MATTER, 2023, 19 (30) : 5723 - 5736
  • [2] A highly stretchable, self-healing, self-adhesive polyacrylic acid/chitosan multifunctional composite hydrogel for flexible strain sensors
    Lv, Rulong
    Cao, Xuan
    Zhang, Taoyi
    Ji, Wenxi
    Muhammad, Usman
    Chen, Jing
    Wei, Yun
    CARBOHYDRATE POLYMERS, 2025, 351
  • [3] Highly Conductive, Stretchable, Adhesive, and Self-Healing Polymer Hydrogels for Strain and Pressure Sensor
    Yang, Chunying
    Yin, Jialin
    Chen, Zhuo
    Du, Haishun
    Tian, Minghua
    Zhang, Miaomiao
    Zheng, Jinxin
    Ding, Lan
    Zhang, Pengfei
    Zhang, Xinyu
    Deng, Kuilin
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2020, 305 (12)
  • [4] Highly Stretchable, Self-Adhesive, Antidrying Ionic Conductive Organohydrogels for Strain Sensors
    Huang, Xinmin
    Wang, Chengwei
    Yang, Lianhe
    Ao, Xiang
    MOLECULES, 2023, 28 (06):
  • [5] Highly Stretchable, Compressible, Adhesive, Conductive Self-healing Composite Hydrogels with Sensor Capacity
    Wang, Ji-Jun
    Zhang, Qiang
    Ji, Xing-Xiang
    Liu, Li-Bin
    CHINESE JOURNAL OF POLYMER SCIENCE, 2020, 38 (11) : 1221 - 1229
  • [6] Highly Stretchable and Self-Healing Strain Sensors Based on Nanocellulose-Supported Graphene Dispersed in Electro-Conductive Hydrogels
    Zheng, Chunxiao
    Yue, Yiying
    Gan, Lu
    Xu, Xinwu
    Mei, Changtong
    Han, Jingquan
    NANOMATERIALS, 2019, 9 (07):
  • [7] Ultra-stretchable, fast self-healing, adhesive, and strain-sensitive wearable sensors based on ionic conductive hydrogels
    Ren, Jie
    Zhang, Wenjing
    Li, Ruirui
    Zhang, Minmin
    Li, Yan
    Yang, Wu
    NEW JOURNAL OF CHEMISTRY, 2024, : 11705 - 11716
  • [8] Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor
    Zheng, Haiyan
    Lin, Nan
    He, Yanyi
    Zuo, Baoqi
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (33) : 40013 - 40031
  • [9] Conductive, self-healing and adhesive cellulose nanofibers-based hydrogels as wearable strain sensors and supercapacitors
    Zhuang, Jie
    Zhang, Xuebing
    Jin, Wanhui
    Mei, Fan
    Xu, Yuqi
    He, Li
    Tan, Sirui
    Cai, Guangming
    Cheng, Deshan
    Wang, Xin
    INDUSTRIAL CROPS AND PRODUCTS, 2025, 225
  • [10] Highly Stretchable and Conductive Self-Healing Hydrogels for Temperature and Strain Sensing and Chronic Wound Treatment
    Zhang, Jieyu
    Wu, Can
    Xu, Yuanyuan
    Chen, Jiali
    Ning, Ning
    Yang, Zeyu
    Guo, Yi
    Hu, Xuefeng
    Wang, Yunbing
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (37) : 40990 - 40999