The largest genome-wide association study for breast cancer in Taiwanese Han population

被引:1
作者
Hsu, Yu-Ching [1 ,2 ,3 ]
Chen, Hung-Lin [4 ]
Cheng, Chi-Fung [4 ]
Chattopadhyay, Amrita [5 ]
Chen, Pei-Shan [4 ]
Lin, Che-Chen [4 ]
Chiang, Hsiu-Yin [4 ]
Liu, Ting-Yuan [6 ]
Huang, Chi-Hao [7 ]
Kuo, Chin-Chi [4 ,8 ,9 ]
Chuang, Eric Y. [10 ,11 ,12 ]
Lu, Tzu-Pin [3 ]
Tsai, Fuu-Jen [13 ]
机构
[1] Natl Taiwan Univ, Bioinformat Program, Taiwan Int Grad Program, Taipei, Taiwan
[2] Acad Sinica, Inst Stat Sci, Bioinformat Program, Taiwan Int Grad Program, Taipei, Taiwan
[3] Natl Taiwan Univ, Inst Hlth Data Analyt & Stat, Coll Publ Hlth, Dept Publ Hlth, Taipei, Taiwan
[4] China Med Univ Hosp, Big Data Ctr, Taichung, Taiwan
[5] China Med Univ Hosp, Ctr Translat Genom Res, Dept Med Res, Taichung, Taiwan
[6] China Med Univ Hosp, Dept Med Res, Mill Person Precis Med Initiat, Taichung, Taiwan
[7] China Med Univ Hosp, Dept Surg, Div Breast Surg, Taichung, Taiwan
[8] China Med Univ Hosp, Dept Internal Med, Div Nephrol, Taichung, Taiwan
[9] China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[10] Natl Taiwan Univ, Bioinformat & Biostat Core, Ctr Genom & Precis Med, Taipei, Taiwan
[11] Natl Taiwan Univ, Grad Inst Biomed Elect & Bioinformat, Taipei, Taiwan
[12] Ind Technol Res Inst, Biomed Technol & Device Res Labs, Hsinchu, Taiwan
[13] China Med Univ Hosp, Genet Ctr, Dept Med Res, Taichung, Taiwan
关键词
Breast cancer; Genome-wide association study; Polygenic risk score; Taiwanese population; POLYGENIC RISK; SCORE; SUBTYPES;
D O I
10.1007/s10549-023-07133-5
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose Breast cancer is a molecularly heterogeneous disease, and multiple genetic variants contribute to its development and prognosis. Most of previous genome-wide association studies (GWASs) and polygenic risk scores (PRSs) analyses focused on studying breast cancers of Caucasian populations, which may not be applicable to other population. Therefore, we conducted the largest breast cancer cohort of Taiwanese population to fill in the knowledge gap. Methods A total of 152,534 Participants recruited by China Medical University Hospital between 2003 and 2019 were filtered by several patient selection criteria and GWAS quality control steps, resulting in the inclusion of 2496 cases and 9984 controls for this study. We then conducted GWAS for all breast cancers and PRS analyses for all breast cancers and the four breast cancer subtypes, including luminal A, luminal B, basal-like, and HER2-enriched. Results The GWAS analyses identified 113 SNPs, 50 of which were novel. The PRS models for all breast cancers and the luminal A subtype showed positively correlated trends between the PRS and the risk of developing breast cancer. The odds ratios (95% confidence intervals) for the groups with the highest PRS in all breast cancers and the luminal A subtype were 5.33 (3.79-7.66) and 3.55 (2.13-6.14), respectively. Conclusion In summary, we explored the association of genetic variants with breast cancer in the largest Taiwanese cohort and developed two PRS models that can predict the risk of developing any breast cancer and the luminal A subtype in Taiwanese women.
引用
收藏
页码:291 / 306
页数:16
相关论文
共 46 条
[1]   A global reference for human genetic variation [J].
Altshuler, David M. ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Donnelly, Peter ;
Eichler, Evan E. ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Green, Eric D. ;
Hurles, Matthew E. ;
Knoppers, Bartha M. ;
Korbel, Jan O. ;
Lander, Eric S. ;
Lee, Charles ;
Lehrach, Hans ;
Mardis, Elaine R. ;
Marth, Gabor T. ;
McVean, Gil A. ;
Nickerson, Deborah A. ;
Wang, Jun ;
Wilson, Richard K. ;
Boerwinkle, Eric ;
Doddapaneni, Harsha ;
Han, Yi ;
Korchina, Viktoriya ;
Kovar, Christie ;
Lee, Sandra ;
Muzny, Donna ;
Reid, Jeffrey G. ;
Zhu, Yiming ;
Chang, Yuqi ;
Feng, Qiang ;
Fang, Xiaodong ;
Guo, Xiaosen ;
Jian, Min ;
Jiang, Hui ;
Jin, Xin ;
Lan, Tianming ;
Li, Guoqing ;
Li, Jingxiang ;
Li, Yingrui ;
Liu, Shengmao ;
Liu, Xiao ;
Lu, Yao ;
Ma, Xuedi ;
Tang, Meifang ;
Wang, Bo .
NATURE, 2015, 526 (7571) :68-+
[2]   Current and future burden of breast cancer: Global statistics for 2020 and 2040 [J].
Arnold, Melina ;
Morgan, Eileen ;
Rumgay, Harriet ;
Mafra, Allini ;
Singh, Deependra ;
Laversanne, Mathieu ;
Vignat, Jerome ;
Gralow, Julie R. ;
Cardoso, Fatima ;
Siesling, Sabine ;
Soerjomataram, Isabelle .
BREAST, 2022, 66 :15-23
[3]   Propensity Score Matching: A Conceptual Review for Radiology Researchers [J].
Baek, Seunghee ;
Park, Seong Ho ;
Won, Eugene ;
Park, Yu Rang ;
Kim, Hwa Jung .
KOREAN JOURNAL OF RADIOLOGY, 2015, 16 (02) :286-296
[4]   Second-generation PLINK: rising to the challenge of larger and richer datasets [J].
Chang, Christopher C. ;
Chow, Carson C. ;
Tellier, Laurent C. A. M. ;
Vattikuti, Shashaank ;
Purcell, Shaun M. ;
Lee, James J. .
GIGASCIENCE, 2015, 4
[5]   Multi-ethnic Imputation System (MI-System): A genotype imputation server for high-dimensional data [J].
Chattopadhyay, Amrita ;
Lee, Chien-Yueh ;
Shen, Ying-Cheng ;
Lu, Kuan-Chen ;
Hsiao, Tzu-Hung ;
Lin, Ching-Heng ;
Lai, Liang-Chuan ;
Tsai, Mong-Hsun ;
Lu, Tzu-Pin ;
Chuang, Eric Y. .
JOURNAL OF BIOMEDICAL INFORMATICS, 2023, 143
[6]   Best Practice Guidelines for Propensity Score Methods in Medical Research: Consideration on Theory, Implementation, and Reporting. A Review [J].
Chen, Jeffrey W. ;
Maldonado, David R. ;
Kowalski, Brooke L. ;
Miecznikowski, Kara B. ;
Kyin, Cynthia ;
Gornbein, Jeffrey A. ;
Domb, Benjamin G. .
ARTHROSCOPY-THE JOURNAL OF ARTHROSCOPIC AND RELATED SURGERY, 2022, 38 (02) :632-642
[7]   Electronic medical record-based deep data cleaning and phenotyping improve the diagnostic validity and mortality assessment of infective endocarditis: medical big data initiative of CMUH [J].
Chiang, Hsiu-Yin ;
Liang, Li-Ying ;
Lin, Che-Chen ;
Chen, Yi-Jin ;
Wu, Min-Yen ;
Chen, Sheng-Hsuan ;
Wu, Pin-Hua ;
Kuo, Chin-Chi ;
Chi, Chih-Yu .
BIOMEDICINE-TAIWAN, 2021, 11 (03) :59-67
[8]   Association Between Preoperative Blood Glucose Level and Hospital Length of Stay for Patients Undergoing Appendectomy or Laparoscopic Cholecystectomy [J].
Chiang, Hsiu-Yin ;
Lin, Kuan-Ting Robin ;
Hsiao, Ya-Luan ;
Huang, Han-Chun ;
Chang, Shih-Ni ;
Hung, Chien-Hui ;
Chang, Ying ;
Wang, Yu-Chun ;
Kuo, Chin-Chi .
DIABETES CARE, 2021, 44 (01) :107-115
[9]   Tutorial: a guide to performing polygenic risk score analyses [J].
Choi, Shing Wan ;
Mak, Timothy Shin-Heng ;
O'Reilly, Paul F. .
NATURE PROTOCOLS, 2020, 15 (09) :2759-2772
[10]   PRSice-2: Polygenic Risk Score software for biobank-scale data [J].
Choi, Shing Wan ;
O'Reilly, Paul F. .
GIGASCIENCE, 2019, 8 (07)