Exceptional fracture toughness in a high-strength Mg alloy with the synergetic effects of bimodal structure, LPSO, and nanoprecipitates

被引:33
作者
Ji, Z. K. [1 ]
Qiao, X. G. [1 ]
Yuan, L. [1 ,2 ]
Cong, F. G. [3 ]
Wang, G. J. [3 ]
Zheng, M. Y. [1 ]
机构
[1] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R China
[2] Natl Key Lab Precis Hot Proc Met, Harbin 150001, Peoples R China
[3] Northeast Light Alloy Co Ltd, Harbin 150060, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnesium alloy; High strength; High fracture toughness; Toughening mechanism; Microstructure evolution; AUSTENITIC STAINLESS-STEEL; MECHANICAL-PROPERTIES; MAGNESIUM ALLOY; GRAIN-REFINEMENT; AGING TREATMENT; MICROSTRUCTURE; BEHAVIOR; PRECIPITATION; EXTRUSION;
D O I
10.1016/j.scriptamat.2023.115675
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Addressing the strength-toughness trade-off issue has been highly desirable for high strength Mg alloys. Herein, an Mg-9Gd-4Y-1Zn-0.5Zr (wt %) alloy is designed, and a yield strength of 430 MPa and plane-strain fracture toughness KIc of 23.1 MPa & BULL;m1/2 are achieved. Intrinsically, significant stress dissipation is induced by interactions between the tensile twinning and the kinking of the lamellar & gamma;' phase, leading to increased KIc. Owing to the residual stress release, the fracture resistance is remarkably improved by the non-basal (a) and (c + a) dislocations activated in the fine dynamic recrystallized (DRXed) grains. Extrinsically, the microcracks initiated along the interfaces between lamellar & gamma;' phase and & alpha;-Mg matrix facilitate the reduction of local crack-driving forces, resulting in an enhanced KIc. Moreover, the underlying toughening mechanisms were revealed, including the crack propagation path deflection caused by coarse deformed grains and microcrack shielding by the long-period stacking ordered (LPSO) and lamellar & gamma;' phases.
引用
收藏
页数:6
相关论文
共 47 条
[41]   Microstructure and mechanical properties of the Mg-Gd-Y-Zn-Zr alloy fabricated by semi-continuous casting [J].
Xu, C. ;
Zheng, M. Y. ;
Chi, Y. Q. ;
Chen, X. J. ;
Wu, K. ;
Wang, E. D. ;
Fan, G. H. ;
Yang, P. ;
Wang, G. J. ;
Lv, X. Y. ;
Xu, S. W. ;
Kamado, S. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 549 :128-135
[42]  
Xu C., 2017, Sci. Rep., V7
[43]   Effect of LPSO and SFs on microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy [J].
Xu, Chao ;
Nakata, Taiki ;
Qiao, Xiaoguang ;
Zheng, Mingyi ;
Wu, Kun ;
Kamado, Shigeharu .
SCIENTIFIC REPORTS, 2017, 7
[44]   Improving strength and ductility of Mg-Gd-Y-Zn-Zr alloy simultaneously via extrusion, hot rolling and ageing [J].
Xu, Chao ;
Zheng, Mingyi ;
Xu, Shiwei ;
Wu, Kun ;
Wang, Erde ;
Fan, Guohua ;
Kamado, Shigeharu .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 643 :137-141
[45]   Mechanical properties and failure mechanisms of Mg-Zn-Y alloys with different extrusion ratio and LPSO volume fraction [J].
Yin, Wujun ;
Briffod, Fabien ;
Shiraiwa, Takayuki ;
Enoki, Manabu .
JOURNAL OF MAGNESIUM AND ALLOYS, 2022, 10 (08) :2158-2172
[46]   Extraordinary fracture toughness in nickel induced by heterogeneous grain structure [J].
Zhang, Shengde ;
Yang, Muxin ;
Yuan, Fuping ;
Zhou, Lingling ;
Wu, Xiaolei .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 830
[47]   Effects of hot compression on the fracture toughness and tensile creep behaviors of a Mg-Gd-Y-Zn-Zr alloy [J].
Zhao, Gantao ;
Zhang, Zhirou ;
Zhang, Yuxiu ;
Peng, Hailong ;
Yang, Zhao ;
Nagaumi, Hiromi ;
Yang, Xuyue .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 834