Experimental study on pullout behaviour of basalt fiber-reinforced polymers minibar embedded in ultra-high performance seawater sea-sand concrete

被引:25
作者
Jiang, Kaidi [1 ,2 ]
Wang, Xin [1 ,2 ]
Ding, Lining [3 ]
Chen, Zhiyuan [1 ,2 ]
Liu, Jianxun [1 ,2 ]
Wu, Zhishen [1 ,2 ]
机构
[1] Southeast Univ, Key Lab C & PC Struct, Minist Educ, Nanjing 210096, Peoples R China
[2] Southeast Univ, Natl & Local Unified Engn Res Ctr Basalt Fiber Pro, Nanjing 210096, Peoples R China
[3] Nanjing Forestry Univ, Sch Civil Engn, Nanjing 210037, Peoples R China
来源
JOURNAL OF BUILDING ENGINEERING | 2023年 / 68卷
基金
中国国家自然科学基金;
关键词
Bond property; Ultra-high-performance concrete; Seawater and sea sand; Surface texture; Constituent content; MECHANICAL-PROPERTIES; FINE AGGREGATE; OYSTER SHELL; OUT BEHAVIOR; BOND SLIP; STRENGTH; MICROSTRUCTURE; SHAPE;
D O I
10.1016/j.jobe.2023.106160
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Pullout tests were conducted on 150 specimens to characterize the bond behaviours of ecofriendly basalt fiber-reinforced polymer minibars (MB) embedded in ultra-high performance seawater sea-sand concrete (UHP-SSC). The experimental variables comprised surface textures of MB (straight and twisted), constituent contents of crushed seashell (SH), and coarse aggregate (CA) in UHP-SSC. The microstructures and surface morphologies of the UHP-SSC matrix and MB were characterized by low-field nuclear magnetic resonance (LF-NMR) and scanning electron microscopy (SEM). A constitutive model for the pullout load-slip relationships was proposed. Experimental results showed that the increments in the bond strength and energy absorption capability provided by twisted MB were more than twice those provided by straight MB, resulting from the additional mechanical anchorage. The acceptable content of SH in sea sand is less than 5% since it could enhance bond strength by 6%, while significant contents show opposite effects. Incorporating CA decreased the interfacial bond behaviours between MB and UHP-SSC, especially with a high volume fraction exceeding 10%. The microscopic observations and pore structures consisted of the evolution of bond behaviours and clarified the corresponding mechanism. The proposed constitutive model considering SH and CA content fits well with the experimental data with relevant regression coefficients over 0.89.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Bond and flexural performance of basalt fiber-reinforced polymer bar-reinforced seawater sea sand glass aggregate concrete beams
    Dong, Zhiqiang
    Wu, Gang
    Zhu, Hong
    Wei, Yang
    Zhao, Xiao-Ling
    Shao, Xinxing
    ADVANCES IN STRUCTURAL ENGINEERING, 2021, 24 (15) : 3359 - 3374
  • [32] Shear performance degradation of basalt fiber-reinforced polymer bars in seawater environments: Coupled effects of seawater sea-sand geopolymer mortar coatings and sustained loading
    Jiang, Zhan
    Zhao, Chenyang
    Xie, Jianhe
    Tan, Yongqiang
    Li, Shixin
    Lu, Zhongyu
    POLYMER COMPOSITES, 2023, 44 (12) : 8465 - 8483
  • [33] Flexural toughness of hybrid fiber-reinforced ultra-high performance concrete
    Deng Z.
    Xue H.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2023, 44 (08): : 1288 - 1294
  • [34] Effect of incorporating recycled macro fibres on the properties of ultra-high-performance seawater sea-sand concrete
    Fu, Bing
    Lin, L. B.
    Zhou, X.
    You, X. M.
    Deng, D. Y.
    JOURNAL OF BUILDING ENGINEERING, 2024, 83
  • [35] Shear behavior of fiber-reinforced ultra-high performance concrete beams
    Meszoely, Tamas
    Randl, Norbert
    ENGINEERING STRUCTURES, 2018, 168 : 119 - 127
  • [36] Fiber-reinforced ultra-high performance concrete under tensile loads
    Millon, O.
    Riedel, W.
    Thoma, K.
    Fehling, E.
    Noeldgen, M.
    DYMAT 2009: 9TH INTERNATIONAL CONFERENCE ON THE MECHANICAL AND PHYSICAL BEHAVIOUR OF MATERIALS UNDER DYNAMIC LOADING, VOL 1, 2009, : 671 - +
  • [37] Experimental study on the effects of glass fibres and expansive agent on the bond behaviour of glass/basalt FRP bars in seawater sea-sand concrete
    Xiong, Z.
    Zeng, Y.
    Li, L. G.
    Kwan, A. K. H.
    He, S. H.
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 274
  • [38] Dynamic bending study of glass fiber reinforced seawater and sea-sand concrete incorporated with expansive agents
    Su, Yue
    Xiong, Zhe
    Hu, Ziqian
    Zhu, Weiping
    Zhou, Keting
    Wang, Jiebin
    Liu, Feng
    Li, Lijuan
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 358
  • [39] Digital fabrication of eco-friendly ultra-high performance fiber-reinforced concrete
    Arunothayan, Arun R.
    Nematollahi, Behzad
    Ranade, Ravi
    Khayat, Kamal H.
    Sanjayan, Jay G.
    CEMENT & CONCRETE COMPOSITES, 2022, 125
  • [40] Research on dynamic constitutive model of ultra-high performance fiber-reinforced concrete
    Du, Yongxiao
    Wei, Jun
    Liu, Kang
    Huang, Dunwen
    Lin, Quanfu
    Yang, Bincai
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 234