New Network Polymer Electrolytes Based on Ionic Liquid and SiO2 Nanoparticles for Energy Storage Systems

被引:8
作者
Khatmullina, Kyunsylu G. [1 ,2 ]
Slesarenko, Nikita A. [1 ]
Chernyak, Alexander V. [1 ,3 ]
Baymuratova, Guzaliya R. [1 ]
Yudina, Alena V. [1 ]
Berezin, Mikhail P. [1 ]
Tulibaeva, Galiya Z. [1 ]
Slesarenko, Anna A. [1 ]
Shestakov, Alexander F. [1 ,4 ]
Yarmolenko, Olga V. [1 ]
机构
[1] RAS, Fed Res Ctr Problems Chem Phys & Med Chem, Chernogolovka 142432, Russia
[2] Natl Res Univ, Inst Energy Efficiency & Hydrogen Technol IEEHT, Moscow Power Engn Inst, Dept Chem & Electrochem Energy, Moscow 111250, Russia
[3] RAS, Inst Solid State Phys, Sci Ctr Chernogolovka, Chernogolovka 142432, Russia
[4] Moscow MV Lomonosov State Univ, Fac Fundamental Phys & Chem Engn, Moscow 119991, Russia
关键词
nanocomposite polymer gel electrolytes; SiO2; nanoparticles; NMR with PFG; self-diffusion coefficients; ionic conductivity; solid-state lithium battery; solvate shell; quantum-chemical modeling; NANOCOMPOSITE; BATTERY; CONDUCTIVITY; DIFFUSION; SILICA; SALT;
D O I
10.3390/membranes13060548
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Elementary processes of electro mass transfer in the nanocomposite polymer electrolyte system by pulse field gradient, spin echo NMR spectroscopy and the high-resolution NMR method together with electrochemical impedance spectroscopy are examined. The new nanocomposite polymer gel electrolytes consisted of polyethylene glycol diacrylate (PEGDA), salt LiBF4 and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) and SiO2 nanoparticles. Kinetics of the PEGDA matrix formation was studied by isothermal calorimetry. The flexible polymer-ionic liquid films were studied by IRFT spectroscopy, differential scanning calorimetry and temperature gravimetric analysis. The total conductivity in these systems was about 10(-4) S cm(-1) (-40 & DEG;C), 10(-3) S cm(-1) (25 & DEG;C) and 10(-2) S cm(-1) (100 & DEG;C). The method of quantum-chemical modeling of the interaction of SiO2 nanoparticles with ions showed the advantage of the mixed adsorption process, in which a negatively charged surface layer is formed from Li+ BF4- ions on silicon dioxide particles and then from ions of the ionic liquid EMI+ BF4-. These electrolytes are promising for use both in lithium power sources and in supercapacitors. The paper shows preliminary tests of a lithium cell with an organic electrode based on a pentaazapentacene derivative for 110 charge-discharge cycles.
引用
收藏
页数:21
相关论文
共 46 条
[1]   Nanocomposites of Inorganic Oxides with Ionic Liquids. Synthesis, Properties, Application (Review) [J].
Agafonov, A. V. ;
Grishina, E. P. .
RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2019, 64 (13) :1641-1648
[2]   An overview of the applications of ionic fluids and deep eutectic solvents enhanced by nanoparticles [J].
Bo, Liu ;
Zhang, Xiaojuan ;
Luo, Zhenmin ;
Saboori, Tabassom ;
Dehghan, Maziar ;
Ghasemizadeh, Mahsa ;
Karimi-Maleh, Hassan ;
Alagumalai, Avinash ;
Mahian, Omid .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (14) :7589-7601
[3]   Review-Polymer Electrolytes for Rechargeable Batteries: From Nanocomposite to Nanohybrid [J].
Boaretto, Nicola ;
Meabe, Leire ;
Martinez-Ibanez, Maria ;
Armand, Michel ;
Zhang, Heng .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (07)
[4]   Lithium-polymer battery with ionic liquid tethered nanoparticles incorporated P(VDF-HFP) nanocomposite gel polymer electrolyte [J].
Bose, Pallab ;
Deb, Debalina ;
Bhattacharya, Subhratanu .
ELECTROCHIMICA ACTA, 2019, 319 :753-765
[5]   Ionogel Electrolytes for High-Performance Lithium Batteries: A Review [J].
Chen, Nan ;
Zhang, Haiqin ;
Li, Li ;
Chen, Renjie ;
Guo, Shaojun .
ADVANCED ENERGY MATERIALS, 2018, 8 (12)
[6]   Silica gel solid nanocomposite electrolytes with interfacial conductivity promotion exceeding the bulk Li-ion conductivity of the ionic liquid electrolyte filler [J].
Chen, Xubin ;
Put, Brecht ;
Sagara, Akihiko ;
Gandrud, Knut ;
Murata, Mitsuhiro ;
Steele, Julian A. ;
Yabe, Hiroki ;
Hantschel, Thomas ;
Roeffaers, Maarten ;
Tomiyama, Morio ;
Arase, Hidekazu ;
Kaneko, Yukihiro ;
Shimada, Mikinari ;
Mees, Maarten ;
Vereecken, Philippe M. .
SCIENCE ADVANCES, 2020, 6 (02)
[7]   Ionic liquid functionalized electrospun gel polymer electrolyte for use in a high-performance lithium metal battery [J].
Cheng, Yuanyuan ;
Zhang, Lan ;
Xu, Song ;
Zhang, Haitao ;
Ren, Baozeng ;
Li, Tao ;
Zhang, Suojiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (38) :18479-18487
[8]   Influence of the reticular polymeric gel-electrolyte structure on ionic and molecular mobility of an electrolyte system salt-ionic liquid: LiBF4-1-ethyl-3-methylimidazolium tetrafluoroborate [J].
Chernyak, A. V. ;
Berezin, M. P. ;
Slesarenko, N. A. ;
Zabrodin, V. A. ;
Volkov, V. I. ;
Yudina, A. V. ;
Shuvalova, N. I. ;
Yarmolenko, O. V. .
RUSSIAN CHEMICAL BULLETIN, 2016, 65 (08) :2053-2058
[9]   NMR study of the polyethylene glycol diacrylate-LiBF4-1-butyl-3-methylimidazolium tetrafluoroborate-propylene/ethylene carbonate electrolyte system [J].
Chernyak, A. V. ;
Yudina, A. V. ;
Yarmolenko, O. V. ;
Volkov, V. I. .
RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2015, 51 (05) :478-482
[10]   Effect of the Solvate Environment of Lithium Cations on the Resistance of the Polymer Electrolyte/Electrode Interface in a Solid-State Lithium Battery [J].
Chernyak, Alexander, V ;
Slesarenko, Nikita A. ;
Slesarenko, Anna A. ;
Baymuratova, Guzaliya R. ;
Tulibaeva, Galiya Z. ;
Yudina, Alena, V ;
Volkov, Vitaly, I ;
Shestakov, Alexander F. ;
Yarmolenko, Olga, V .
MEMBRANES, 2022, 12 (11)