A deep residual convolutional neural network for mineral classification

被引:15
|
作者
Agrawal, Neelam [1 ]
Govil, Himanshu [2 ]
机构
[1] Natl Inst Technol Raipur, Dept Comp Applicat, G E Rd, Raipur 492010, Chhattisgarh, India
[2] Natl Inst Technol Raipur, Dept Appl Geol, G E Rd, Raipur 492010, Chhattisgarh, India
关键词
Deep learning; Convolutional neural networks; Long short term memory; Mineral classification; HYPERSPECTRAL IMAGERY; DISCRIMINATION; PROSPECTIVITY; DEPOSITS; CUPRITE;
D O I
10.1016/j.asr.2022.12.028
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In recent years, the deep learning computing paradigm has revolutionized the way of remote sensing data analysis. The emerging hyperspectral remote sensing has paved the way for the efficient and accurate exploration of the minute features of the earth's surface due to the increased number of contiguous spectral bands. Hence, hyperspectral images can efficiently impart useful information about mineral resources for precise discrimination and identification in lithological studies. Rapid advancements in computing capabilities and deep learning techniques give the research community a new impulse to develop advanced, robust, and efficient hyperspectral remote sensing-based mineral classification frameworks. The present study aims to introduce two novel deep learning-based mineral classifica-tion frameworks: mineral-CNN-LSTM and mineral-ResNet. The architecture of mineral-CNN-LSTM is based on 1D-CNN and LSTM model, whereas the architecture of mineral-ResNet is based on 1D-CNN, LSTM model, and residual connections. The frameworks use raw data as input without feature selection or data augmentation preprocessing steps. The widely used early stop method is also utilized to prevent overfitting of the framework during the training process. The experimental evaluation carried out over the AVIRIS hyper -spectral image scene of the Cuprite mining area confirms that the mineral-ResNet can effectively identify most of the minerals such as Alunite, Calcite, Halloysite, Kaolinite, Montmorillonite, Muscovite, Chalcedony with the overall accuracy of 92.16%, and kappa value of 0.89 and mineral-CNN-LSTM achieved the overall accuracy of 91.71% and kappa value of 0.88 for these minerals. Further-more, a comparative evaluation of the proposed frameworks has been performed with widely used Convolutional Neural Network (CNN) based architectures such as VGG19, VGG16, ResNet-50, and AlexNet; and various machine learning based classifiers. The pro-posed architectures offer better performance with shorter testing and training time than these existing CNN-based architectures. The proposed framework could be useful for other earth observation-related applications in various fields such as agriculture, forestry, geol-ogy, hydrology, ecology, urban planning, military and defense applications, etc.(c) 2022 COSPAR. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:3186 / 3202
页数:17
相关论文
共 50 条
  • [31] Using Deep Convolutional Neural Networks for Earthquake and Explosion Classification
    Hong, Mingquan
    Zhang, Hongcai
    Wu, Lihua
    Chen, Jialiang
    Dai, Lijin
    Wang, Lujun
    Dong, Tengchao
    Yang, Jinling
    Fang, Lihua
    IEEE ACCESS, 2025, 13 : 56144 - 56159
  • [32] Plant species classification using deep convolutional neural network
    Dyrmann, Mads
    Karstoft, Henrik
    Midtiby, Henrik Skov
    BIOSYSTEMS ENGINEERING, 2016, 151 : 72 - 80
  • [33] Residual Deep Convolutional Neural Network Predicts MGMT Methylation Status
    Panagiotis Korfiatis
    Timothy L. Kline
    Daniel H. Lachance
    Ian F. Parney
    Jan C. Buckner
    Bradley J. Erickson
    Journal of Digital Imaging, 2017, 30 : 622 - 628
  • [34] Deep Residual Separable Convolutional Neural Network for lung tumor segmentation
    Dutande, Prasad
    Baid, Ujjwal
    Talbar, Sanjay
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 141
  • [35] Residual Deep Convolutional Neural Network Predicts MGMT Methylation Status
    Korfiatis, Panagiotis
    Kline, Timothy L.
    Lachance, Daniel H.
    Parney, Ian F.
    Buckner, Jan C.
    Erickson, Bradley J.
    JOURNAL OF DIGITAL IMAGING, 2017, 30 (05) : 622 - 628
  • [36] The skin cancer classification using deep convolutional neural network
    Dorj, Ulzii-Orshikh
    Lee, Keun-Kwang
    Choi, Jae-Young
    Lee, Malrey
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (08) : 9909 - 9924
  • [37] WEATHER CLASSIFICATION WITH DEEP CONVOLUTIONAL NEURAL NETWORKS
    Elhoseiny, Mohamed
    Huang, Sheng
    Elgammal, Ahmed
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3349 - 3353
  • [38] Malware Classification with Deep Convolutional Neural Networks
    Kalash, Mahmoud
    Rochan, Mrigank
    Mohammed, Noman
    Bruce, Neil D. B.
    Wang, Yang
    Iqbal, Farkhund
    2018 9TH IFIP INTERNATIONAL CONFERENCE ON NEW TECHNOLOGIES, MOBILITY AND SECURITY (NTMS), 2018,
  • [39] Sound Classification Using Convolutional Neural Network and Tensor Deep Stacking Network
    Khamparia, Aditya
    Gupta, Deepak
    Nhu Gia Nguyen
    Khanna, Ashish
    Pandey, Babita
    Tiwari, Prayag
    IEEE ACCESS, 2019, 7 : 7717 - 7727
  • [40] Classification of multi-lead ECG with deep residual convolutional neural networks
    Cai, Wenjie
    Liu, Fanli
    Xu, Bolin
    Wang, Xuan
    Hu, Shuaicong
    Wang, Mingjie
    PHYSIOLOGICAL MEASUREMENT, 2022, 43 (07)