Strong convergence of two regularized relaxed extragradient schemes for solving the split feasibility and fixed point problem with multiple output sets

被引:12
作者
Taiwo, Adeolu [1 ]
Reich, Simeon [1 ]
Izuchukwu, Chinedu [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, Haifa, Israel
基金
以色列科学基金会;
关键词
Split feasibility and fixed point problem; pseudocontractive mapping; Hilbert space; strong convergence; ITERATIVE ALGORITHMS; PROJECTION;
D O I
10.1080/00036811.2023.2166495
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the split feasibility and fixed point problem with multiple output sets in real Hilbert spaces. Using Tikhonov's regularization and viscosity approximation techniques, we propose two relaxed extragradient algorithms for finding approximate solutions to this problem and prove that the sequences they generate converge strongly. Finally, we give some consequences and an application of our results, and also present numerical examples to validate the efficiency of our algorithms.
引用
收藏
页码:5132 / 5156
页数:25
相关论文
共 39 条
[1]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[3]   A unified treatment of some iterative algorithms in signal processing and image reconstruction [J].
Byrne, C .
INVERSE PROBLEMS, 2004, 20 (01) :103-120
[4]   Iterative Methods for Fixed Point Problems in Hilbert Spaces Preface [J].
Cegielski, Andrzej .
ITERATIVE METHODS FOR FIXED POINT PROBLEMS IN HILBERT SPACES, 2012, 2057 :IX-+
[5]   On relaxed viscosity iterative methods for variational inequalities in Banach spaces [J].
Ceng, L. -C. ;
Ansari, Q. H. ;
Yao, J. C. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 230 (02) :813-822
[6]   An extragradient method for solving split feasibility and fixed point problems [J].
Ceng, L-C ;
Ansari, Q. H. ;
Yao, J-C .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (04) :633-642
[7]   Mann type iterative methods for finding a common solution of split feasibility and fixed point problems [J].
Ceng, Lu-Chuan ;
Ansari, Qamrul Hasan ;
Yao, Jen-Chih .
POSITIVITY, 2012, 16 (03) :471-495
[8]   The multiple-sets split feasibility problem and its applications for inverse problems [J].
Censor, Y ;
Elfving, T ;
Kopf, N ;
Bortfeld, T .
INVERSE PROBLEMS, 2005, 21 (06) :2071-2084
[9]  
Censor Y., 1994, Numer. Algorithms, V8, P221, DOI [DOI 10.1007/BF02142692, 10.1007/BF02142692]
[10]  
Censor Y., 2010, J CONVEX ANAL, V26