Influence of Microgel and Interstitial Matrix Compositions on Granular Hydrogel Composite Properties

被引:44
作者
Muir, Victoria G. G. [1 ]
Weintraub, Shoshana [1 ]
Dhand, Abhishek P. P. [1 ]
Fallahi, Hooman [2 ]
Han, Lin [2 ]
Burdick, Jason A. A. [1 ,3 ,4 ]
机构
[1] Univ Penn, Sch Engn & Appl Sci, Dept Bioengn, Philadelphia, PA 19104 USA
[2] Drexel Univ, Sch Biomed Engn Sci & Hlth Syst, Philadelphia, PA 19104 USA
[3] Univ Colorado Boulder, BioFrontiers Inst, Boulder, CO 80303 USA
[4] Univ Colorado Boulder, Coll Engn & Appl Sci, Dept Chem & Biol Engn, Boulder, CO 80303 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
3D printing; biomaterials; granular; hyaluronic acid; hydrogels; HYALURONIC-ACID HYDROGELS; NANOMECHANICS; BIOINK;
D O I
10.1002/advs.202206117
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Granular hydrogels are an emerging class of biomaterials formed by jamming hydrogel microparticles (i.e., microgels). These materials have many advantageous properties that can be tailored through microgel design and extent of packing. To enhance the range of properties, granular composites can be formed with a hydrogel interstitial matrix between the packed microgels, allowing for material flow and then stabilization after crosslinking. This approach allows for distinct compartments (i.e., microgels and interstitial space) with varied properties to engineer complex material behaviors. However, a thorough investigation of how the compositions and ratios of microgels and interstitial matrices influence material properties has not been performed. Herein, granular hydrogel composites are fabricated by combining fragmented hyaluronic acid (HA) microgels with interstitial matrices consisting of photocrosslinkable HA. Microgels of varying compressive moduli (10-70 kPa) are combined with interstitial matrices (0-30 vol.%) with compressive moduli varying from 2-120 kPa. Granular composite structure (confocal imaging), mechanics (local and bulk), flow behavior (rheology), and printability are thoroughly assessed. Lastly, variations in the interstitial matrix chemistry (covalent vs guest-host) and microgel degradability are investigated. Overall, this study describes the influence of granular composite composition on structure and mechanical properties of granular hydrogels towards informed designs for future applications.
引用
收藏
页数:17
相关论文
共 75 条
[1]   Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications [J].
Ahearne, M ;
Yang, Y ;
El Haj, AJ ;
Then, KY ;
Liu, KK .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2005, 2 (05) :455-463
[2]   Clickable Microgel Scaffolds as Platforms for 3D Cell Encapsulation [J].
Caldwell, Alexander S. ;
Campbell, Gavin T. ;
Shekiro, Kelly M. T. ;
Anseth, Kristi S. .
ADVANCED HEALTHCARE MATERIALS, 2017, 6 (15)
[3]  
Callister W.D., 2017, Materials Science and Engineering: An Introduction, P577
[4]   A 96-well assay for uronic acid carbazole reaction [J].
Cesaretti, M ;
Luppi, E ;
Maccari, F ;
Volpi, N .
CARBOHYDRATE POLYMERS, 2003, 54 (01) :59-61
[5]   Mechanical reinforcement of granular hydrogels [J].
Charlet, Alvaro ;
Bono, Francesca ;
Amstad, Esther .
CHEMICAL SCIENCE, 2022, 13 (11) :3082-3093
[6]   Recycling of Load-Bearing 3D Printable Double Network Granular Hydrogels [J].
Charlet, Alvaro ;
Hirsch, Matteo ;
Schreiber, Sanjay ;
Amstad, Esther .
SMALL, 2022, 18 (12)
[7]   Translational Applications of Hydrogels [J].
Correa, Santiago ;
Grosskopf, Abigail K. ;
Hernandez, Hector Lopez ;
Chan, Doreen ;
Yu, Anthony C. ;
Stapleton, Lyndsay M. ;
Appel, Eric A. .
CHEMICAL REVIEWS, 2021, 121 (18) :11385-11457
[8]   Bioprinting for the Biologist [J].
Daly, Andrew C. ;
Prendergast, Margaret E. ;
Hughes, Alex J. ;
Burdick, Jason A. .
CELL, 2021, 184 (01) :18-32
[9]   Hydrogel microparticles for biomedical applications [J].
Daly, Andrew C. ;
Riley, Lindsay ;
Segura, Tatiana ;
Burdick, Jason A. .
NATURE REVIEWS MATERIALS, 2020, 5 (01) :20-43
[10]   Click by Click Microporous Annealed Particle (MAP) Scaffolds [J].
Darling, Nicole J. ;
Xi, Weixian ;
Sideris, Elias ;
Anderson, Alexa R. ;
Pong, Cassie ;
Carmichael, S. Thomas ;
Segura, Tatiana .
ADVANCED HEALTHCARE MATERIALS, 2020, 9 (10)